Skip to main content
Log in

Functional molecular morphology of anterior pituitary cells, from hormone production to intracellular transport and secretion

  • Review
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Combined in situ hybridization (ISH) and immunohistochemistry (IHC) under electron microscopy (EM-ISH & IHC) has sufficient ultrastructural resolution to provide two-dimensional images of subcellular localization of pituitary hormone and its mRNA in a pituitary cell. The advantages of semiconductor nanocrystals (Quantum dots; Qdots) and confocal laser scanning microscopy (CLSM) enable us to obtain three-dimensional images of the subcellular localization of pituitary hormone and its mRNA. Both EM-ISH & IHC and ISH & IHC using Qdots and CLSM are useful for understanding the relationship between protein and mRNA simultaneously in two or three dimensions. CLSM observation of rab3B and SNARE proteins such as SNAP-25 and syntaxin revealed that both rab3B and SNARE system proteins play an important role and work together as the exocytotic machinery in anterior pituitary cells. Another important issue is the intracellular transport and secretion of pituitary hormone. An experimental pituitary cell line, the GH3 cell, in which growth hormone (GH) is linked to enhanced yellow fluorescein protein (EYFP), has been developed. This stable GH3 cell secretes GH linked to EYFP upon being stimulated by Ca2+ influx or Ca2+ release from storage. This GH3 cell is useful for real-time visualization of the intracellular transport and secretion of GH. These three methods enable us to visualize consecutively the processes of transcription, translation, transport, and secretion of pituitary hormone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matsuno A, Utsunomiya H, Ohsugi Y, Takekoshi S, Sanno N, Osamura RY, Nagao K, Tamura A, Nagashima T (1996) Simultane ous ultrastructural identification of growth hormone and its messenger ribonucleic acid using combined immunohistochemistry and non-radioisotopic in situ hybridization: a technical note. Histochem J 28:703–707

    Article  PubMed  CAS  Google Scholar 

  2. Matsuno A, Ohsugi Y, Utsunomiya H, Takekoshi S, Munakata S, Nagao K, Osamura RY, Tamura A, Nagashima T (1998) An improved ultrastructural double-staining method of rat growth hormone and its mRNA using LR White resin: a technical note. Histochem J 30:105–109

    Article  PubMed  CAS  Google Scholar 

  3. Matsuno A, Nagashima T, Osamura RY, Watanabe K (1998) Application of ultrastructural in situ hybridization combined with immunohistochemistry to pathophysiological studies of pituitary cell: technical review. Acta Histochem Cytochem 31:259–265

    Google Scholar 

  4. Matsuno A, Nagashima T, Takekoshi S, Utsunomiya H, Sanno N, Osamura RY, Watanabe K, Tamura A, Teramoto A (1998) Ultrastructural simultaneous identification of growth hormone and its messenger ribonucleic acid. Endocr J 45(suppl):S101–S104

    Article  PubMed  CAS  Google Scholar 

  5. Matsuno A, Itoh J, Osamura RY, Watanabe K, Nagashima T (1999) Electron microscopic and confocal laser scanning microscopic observation of subcellular organelles and pituitary hormone mRNA: application of ultrastructural in situ hybridization and immunohistochemistry to the pathophysiological studies of pituitary cells. Endocr Pathol 10:199–211

    Article  PubMed  CAS  Google Scholar 

  6. Matsuno A, Nagashima T, Ohsugi Y, Utsunomiya H, Takekoshi S, Munakata S, Nagao K, Osamura RY, Watanabe K (2000) Electron microscopic observation of intracellular expression of mRNA and its protein product: technical review on ultrastructural in situ hybridization and its combination with immunohistochemistry. Histol Histopathol 15:261–268

    PubMed  CAS  Google Scholar 

  7. Osamura RY, Itoh Y, Matsuno A (2000) Application of plastic embedding to electron microscopic immunocytochemistry and in situ hybridization in observations of production and secretion of peptide hormones. J Histochem Cytochem 48:885–892

    Article  PubMed  CAS  Google Scholar 

  8. Osamura RY, Tahara S, Kurotani R, Sanno N, Matsuno A, Teramoto A (2000) Contributions of immunohistochemistry and in situ hybridization to the functional analysis of pituitary adenomas. J Histochem Cytochem 48:445–458

    Article  PubMed  CAS  Google Scholar 

  9. Arndt-Jovin DJ, Robert-Nicoud M, Kaufman SJ, Jovin TM (1985) Fluorescence digital imaging microscopy in cell biology. Science 230:247–256

    Article  PubMed  CAS  Google Scholar 

  10. Arndt-Jovin DJ, Robert-Nicoud M, Jovin TM (1990) Probing DNA structure and function with a multi-wavelength fluorescence confocal laser microscope. J Microsc 157:61–72

    PubMed  CAS  Google Scholar 

  11. Bauman JG, Bayer JA, van Dekken H (1990) Fluorescent in-situ hybridization to detect cellular RNA by flow cytometry and confocal microscopy. J Microsc 157:73–81

    PubMed  CAS  Google Scholar 

  12. Hozak P, Novak JT, Smetana K (1989) Three-dimensional reconstructions of nucleolus-organizing regions in PHA-stimulated human lymphocytes. Biol Cell 66:225–233

    Article  PubMed  CAS  Google Scholar 

  13. Itoh J, Osamura RY, Watanabe K. (1992) Subcellular visualization of light microscopic specimens by laser scanning microscopy and computer analysis: a new application of image analysis. J Histochem Cytochem 40:955–967

    Article  PubMed  CAS  Google Scholar 

  14. Itoh J, Sanno N, Matsuno A, Itoh Y, Watanabe K, Osamura RY (1997) Application of confocal laser scanning microscopy (CLSM) to visualize prolactin (PRL) and PRL mRNA in the normal and estrogen-treated rat pituitary glands using non-fluorescent probes. Microsc Res Tech 39:157–167

    Article  PubMed  CAS  Google Scholar 

  15. Itoh J, Matsuno A, Yamamoto Y, Kawai K, Serizawa A, Watanabe K, Itoh Y, Osamura RY (2001) Confocal laser scanning microscopic imaging of subcellular organelles, mRNA, protein products, and the microvessel environment. Acta Histochem Cytochem 34:285–297

    Article  CAS  Google Scholar 

  16. Michel E, Parsons JA (1990) Histochemical and immunocytochemical localization of prolactin receptors on Nb2 lymphoma cells: applications of confocal microscopy. J Histochem Cytochem 38:965–973

    Article  PubMed  CAS  Google Scholar 

  17. Robinson JM, Batten BE (1989) Detection of diaminobenzidine reactions using scanning laser confocal reflectance microscopy. J Histochem Cytochem 37:1761–1765

    Article  PubMed  CAS  Google Scholar 

  18. Takamatsu T, Fujita S (1988) Microscopic tomography by laser scanning microscopy and its three-dimensional reconstruction. J Microsc 149:167–174

    PubMed  CAS  Google Scholar 

  19. Tao W, Walter RJ, Berns MW (1988) Laser-transected microtubules exhibit individuality of regrowth, however most free new ends of the microtubules are stable. J Cell Biol 107:1025–1035

    Article  PubMed  CAS  Google Scholar 

  20. White JG, Amos WB, Fordham M (1987) An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J Cell Biol 105:41–48

    Article  PubMed  CAS  Google Scholar 

  21. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  PubMed  CAS  Google Scholar 

  22. Wang C, Shim M, Guyot-Sionnest P (2001) Electrochromic nanocrystal quantum dots. Science 291:2390–2392

    Article  PubMed  CAS  Google Scholar 

  23. Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46

    Article  PubMed  CAS  Google Scholar 

  24. Gao X, Chan WC, Nie S (2002) Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J Biomed Opt 7:532–537

    Article  PubMed  CAS  Google Scholar 

  25. Gao X, Nie S (2003) Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotechnol 21:371–373

    Article  PubMed  CAS  Google Scholar 

  26. Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635

    Article  PubMed  CAS  Google Scholar 

  27. Pathak S, Choi SK, Arnheim N, Thompson ME (2001) Hydroxylated quantum dots as luminescent probes for in situ hybridization. J Am Chem Soc 123:4103–4104

    Article  PubMed  CAS  Google Scholar 

  28. Xiao Y, Barker PE (2004) Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res 32:e28

    Article  PubMed  Google Scholar 

  29. Matsuno A, Itoh J, Takekoshi S, Nagashima T, Osamura RY (2005) Three-dimensional imagings of the intracellular localization of growth hormone and prolactin and their mRNA using nanocrystal (Quantum dot) and confocal laser scanning microscopy techniques. J Histochem Cytochem 53:833–838

    Article  PubMed  CAS  Google Scholar 

  30. Matsuno A, Itoh J, Takekoshi S, Nagashima T, Osamura, RY (2005) Two- or three- dimensional imagings of simultaneous visualization of rat pituitary hormone and its mRNA: comparison between electron microscopy and confocal laser scanning microscopy with semiconductor nanocrystals (Quantum dots). Acta Histochem Cytochem 38:253–256

    Article  CAS  Google Scholar 

  31. Matsuno A, Itoh J, Takekoshi S, Itoh Y, Ohsugi Y, Katayama H, Nagashima T, Osamura RY (2003) Dynamics of subcellular organelles, growth hormone, rab3b, SNAP-25, and syntaxin in rat pituitary cells caused by growth hormone releasing hormone and somatostatin. Microsc Res Tech 62:232–239

    Article  PubMed  CAS  Google Scholar 

  32. Matsuno A, Itoh J, Takekoshi S, Nagashima T, Osamura RY (2003) Functional and morphological analyses of rab proteins and the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) system in the secretion of pituitary hormones. Acta Histochem Cytochem 36:501–506

    Article  CAS  Google Scholar 

  33. Matsuno A, Mizutani A, Itoh J, Takekoshi S, Nagashima T, Okinaga H, Takano K, Osamura RY (2005) Establishment of stable GH3 cell line expressing enhanced yellow fluorescein protein-growth hormone fusion protein. J Histochem Cytochem 53:1177–1180

    Article  PubMed  CAS  Google Scholar 

  34. Matsuno A, Itoh J, Mizutani A, Takekoshi S, Osamura RY, Okinaga H, Ide F, Miyawaki S, Uno T, Asano S, Tanaka J, Nakaguchi H, Sasaki M, Murakami M (2008) Co-transfection of EYFP-GH and ECFP-rab3B in an experimental pituitary GH3 cell: a role of rab3B in secretion of GH through porosome. Folia Histochem Cytobiol 46:419–421

    Article  PubMed  CAS  Google Scholar 

  35. Lacoste TD, Michalet X, Pinaud F, Chemla DS, Alivisatos AP, Weiss S (2000) Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc Natl Acad Sci U S A 97:9461–9466

    Article  PubMed  CAS  Google Scholar 

  36. Michalet X, Pinaud F, Lacoste TD, Dahan M, Bruchez MP, Alivisatos AP, Weiss S (2001) Properties of fluorescent semiconductor nanocrystals and their application to biological labeling. Single Mol 4:261–276

    Article  Google Scholar 

  37. Matsuno A, Itoh J, Itoh Y, Osamura RY, Katayama H, Nagashima T (2001) Histopathological analyses of silent pituitary somatotroph adenomas using immunohistochemistry, in situ hybridization and confocal laser scanning microscopic observation. Pathol Res Pract 197:13–20

    Article  PubMed  CAS  Google Scholar 

  38. Matsuno A, Itoh J, Nagashima T, Osamura RY, Watanabe K (2001) PROTOCOLS 10: confocal laser scanning microscopy. In: Lloyd RV (ed) Morphology methods: cell and molecular biology techniques. Humana Press, Totowa, NJ, pp 165-180

  39. Itoh J, Yasumura K, Takeshita T, Ishikawa H, Kobayashi H, Ogawa K, Kawai K, Serizawa A, Osamura RY (2000) Three-dimensional imaging of tumor angiogenesis. Anal Quant Cytol Histol 22:85–90

    PubMed  CAS  Google Scholar 

  40. Itoh J, Kawai K, Serizawa A, Yasumura K, Ogawa K, Osamura RY (2000) A new approach to three-dimensional reconstructed imaging of hormone-secreting cells and their microvessel environments in rat pituitary glands by confocal laser scanning microscopy. J Histochem Cytochem 48:569–578

    Article  PubMed  CAS  Google Scholar 

  41. Itoh J, Kawai K, Serizawa A, Yamamoto Y, Ozawa K, Matsuno A, Watanabe K, Osamura RY (2001) Three-dimensional imaging of hormone-secreting cells and their microvessel environments in estrogen-induced prolactinoma of the rat pituitary gland by confocal laser scanning microscopy. Appl Immunohistochem Mol Morphol (AIMM) 9:364–370

    Article  CAS  Google Scholar 

  42. Itoh J, Yasumura K, Ogawa K, Kawai K, Serizawa A, Yamamoto Y, Osamura RY (2003) Three-dimensional (3D) imaging of tumor angiogenesis and its inhibition: evaluation of tumor vasculartargeting agent efficacy in the DMBA-induced rat breast cancer model by confocal laser scanning microscopy (CLSM). Acta Histochem Cytochem 36:27–36

    Article  Google Scholar 

  43. Noda T, Kaidzu S, Kikuchi M, Yashiro T (2001) Topographic affinities of hormone-producing cells in the rat anterior pituitary gland. Acta Histochem Cytochem 34:313–319

    Article  Google Scholar 

  44. Robinson JM, Batten BE (1989) Detection of diaminobenzidine reactions using scanning laser confocal reflectance microscopy. J Histochem Cytochem 37:1761–1765

    Article  PubMed  CAS  Google Scholar 

  45. Baba R, Yamami M, Sakuma Y, Fujita M, Fujimoto S (2005) Relationship between glucose transporter and changes in the absorptive system in small intestinal absorptive cells during the weaning process. Med Mol Morphol 38:47–53

    Article  PubMed  Google Scholar 

  46. Matsuoka T, Kobayashi M, Sugimoto T, Araki K (2005) An immunocytochemical study of regeneration of gastric epithelia in rat experimental ulcers. Med Mol Morphol 38:233–242

    Article  PubMed  Google Scholar 

  47. Osamura RY, Egashira N, Yamazaki M, Miyai S, Takekoshi S, Kajiwara H, Kumai N, Umemura S, Yasuda M, Sanno N, Teramoto A (2003) Mechanisms for production and secretion of hormones in physiologic and pathologic conditions. Acta Histochem Cytochem 36:99–103

    Article  CAS  Google Scholar 

  48. Lledo PM, Vernier P, Vincent JD, Mason WT, Zorec R (1993) Inhibition of Rab3B expression attenuates Ca(2+)-dependent exocytosis in rat anterior pituitary cells. Nature (Lond) 364:540–544

    Article  CAS  Google Scholar 

  49. Mizoguchi A (1994) Rab3A-RabGDI-Rabphilin-3A system regulating membrane fusion machinery in the synapse and the growth cone. Acta Histochem Cytochem 27:117–126

    CAS  Google Scholar 

  50. Tasaka K, Masumoto N, Mizuki J, Ikebuchi Y, Ohmichi M, Kurachi H, Miyake A, Murata Y (1998) Rab3B is essential for GnRHinduced gonadotrophin release from anterior pituitary cells. J Endocrinol 157:267–274

    Article  PubMed  CAS  Google Scholar 

  51. Tahara S, Sanno N, Teramoto A, Osamura RY (1999) Expression of Rab3, a Ras-related GTP-binding protein, in human nontumorous pituitaries and pituitary adenomas. Mod Pathol 12:627–634

    PubMed  CAS  Google Scholar 

  52. Hess DT, Slater TM, Wilson MC, Skene JH (1992) The 25 kDa synaptosomal-associated protein SNAP-25 is the major methioninerich polypeptide in rapid axonal transport and a major substrate for palmitoylation in adult CNS. J Neurosci 12:4634–4641

    PubMed  CAS  Google Scholar 

  53. Oyler GA, Higgins GA, Hart RA, Battenberg E, Billingsley M, Bloom FE, Wilson MC (1989) The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol 109:3039–3052

    Article  PubMed  CAS  Google Scholar 

  54. Bennett MK, Calakos N, Scheller RH (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257:255–259

    Article  PubMed  CAS  Google Scholar 

  55. Calakos N, Bennett MK, Peterson KE, Scheller RH (1994) Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. Science 263:1146–1149

    Article  PubMed  CAS  Google Scholar 

  56. Sollner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE (1993) A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–418

    Article  PubMed  CAS  Google Scholar 

  57. Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature (Lond) 362:318–324

    Article  CAS  Google Scholar 

  58. Garcia EP, Gatti E, Butler M, Burton J, De Camilli P (1994) A rat brain Sec1 homologue related to Rop and UNC18 interacts with syntaxin. Proc Natl Acad Sci U S A 91:2003–2007

    Article  PubMed  CAS  Google Scholar 

  59. Hata Y, Slaughter CA, Sudhof TC (1993) Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature (Lond) 366:347–351

    Article  CAS  Google Scholar 

  60. Pevsner J, Hsu SC, Scheller RH (1994) n-Sec1: a neural-specific syntaxin-binding protein. Proc Natl Acad Sci U S A 91:1445–1449

    Article  PubMed  CAS  Google Scholar 

  61. Pevsner J, Hsu SC, Braun JE, Calakos N, Ting AE, Bennett MK, Scheller RH (1994) Specificity and regulation of a synaptic vesicle docking complex. Neuron 13:353–361

    Article  PubMed  CAS  Google Scholar 

  62. Jacobsson G, Meister B (1996) Molecular components of the exocytotic machinery in the rat pituitary gland. Endocrinology 137: 5344–5356

    Article  PubMed  CAS  Google Scholar 

  63. Salinas E, Quintanar JL, Reig JA (1999) Immunohistochemical study of Syntaxin-1 and SNAP-25 in the pituitaries of mouse, guinea pig and cat. Acta Physiol Pharmacol Ther Latinoam 49:61–64

    PubMed  CAS  Google Scholar 

  64. Quintanar JL, Salinas E (2002) Effect of hypothyroidism on synaptosomal-associated protein of 25 kDa and syntaxin-1 expression in adenohypophyses of rat. J Endocrinol Invest 25:754–758

    PubMed  CAS  Google Scholar 

  65. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  PubMed  CAS  Google Scholar 

  66. Magoulas C, McGuinness L, Balthasar N, Carmignac DF, Sesay AK, Mathers KE, Christian H, Candeil L, Bonnefont X, Mollard P, Robinson ICAF (2000) A secreted fluorescent reporter targeted to pituitary growth hormone cells in transgenic mice. Endocrinology 141:4681–4689

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Matsuno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuno, A., Mizutani, A., Okinaga, H. et al. Functional molecular morphology of anterior pituitary cells, from hormone production to intracellular transport and secretion. Med Mol Morphol 44, 63–70 (2011). https://doi.org/10.1007/s00795-011-0545-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-011-0545-4

Key words

Navigation