Skip to main content
Log in

Detection of characteristic distributions of phospholipid head groups and fatty acids on neurite surface by time-of-flight secondary ion mass spectrometry

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Neurons have a large surface because of their long and thin neurites. This surface is composed of a lipid bilayer. Lipids have not been actively investigated so far because of some technical difficulties, although evidence from cell biology is emerging that lipids contain valuable information about their roles in the central nervous system. Recent progress in techniques, e.g., mass spectrometry, opens a new epoch of lipid research. We show herein the characteristic localization of phospholipid components in neurites by means of time-of-flight secondary ion mass spectrometry. We used explant cultures of mouse superior cervical ganglia, which are widely used by neurite investigation research. In a positive-ion detection mode, phospholipid head group molecules were predominantly detected. The ions of m/z 206.1 [phosphocholine, a common component of phosphatidylcholine (PC) and sphingomyelin (SM)] were evenly distributed throughout the neurites, whereas the ions of m/z 224.1, 246.1 (glycerophosphocholine, a part of PC, but not SM) showed relatively strong intensity on neurites adjacent to soma. In a negative-ion detection mode, fatty acids such as oleic and palmitic acids were mainly detected, showing high intensity on neurites adjacent to soma. Our results suggest that lipid components on the neuritic surface show characteristic distributions depending on neurite region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arlt S, Beisiegel U, Kontush A (2002) Lipid peroxidation in neuro-degeneration: new insights into Alzheimer’s disease. Curr Opin Lipidol 13:289–294

    Article  CAS  PubMed  Google Scholar 

  2. Volkel W, Sicilia T, Pahler A, Gsell W, Tatschner T, Jellinger K, Leblhuber F, Riederer P, Lutz WK, Gotz ME (2006) Increased brain levels of 4-hydroxy-2-nonenal glutathione conjugates in severe Alzheimer’s disease. Neurochem Int 48:679–686

    Article  PubMed  Google Scholar 

  3. Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389

    Article  CAS  PubMed  Google Scholar 

  4. Roots BI (1995) Locating lipids in the CNS: an historical perspective. Neurochem Res 20:1261–1268

    Article  CAS  PubMed  Google Scholar 

  5. Kuerschner L, Ejsing CS, Ekroos K, Shevchenko A, Anderson KI, Thiele C (2005) Polyene-lipids: a new tool to image lipids. Nat Methods 2:39–45

    Article  CAS  PubMed  Google Scholar 

  6. Sugiura Y, Shimma S, Konishi Y, Yamada MK, Setou M (2008) Imaging mass spectrometry technology and application on ganglioside study: visualization of age-dependent accumulation of C20-ganglioside molecular species in the mouse hippocampus. PLoS One 3:e3232

    Article  PubMed  Google Scholar 

  7. Shimma S, Sugiura Y, Hayasaka T, Zaima N, Matsumoto M, Setou M (2008) Mass imaging and identification of biomolecules with MALDI-QIT-TOF-based system. Anal Chem 80:878–885

    Article  CAS  PubMed  Google Scholar 

  8. Shimma S, Sugiura Y, Hayasaka T, Hoshikawa Y, Noda T, Setou M (2007) MALDI-based imaging mass spectrometry revealed abnormal distribution of phospholipids in colon cancer liver metastasis. J Chromatogr B Anal Technol Biomed Life Sci 855:98–103

    Article  CAS  Google Scholar 

  9. Moritake S, Taira S, Sugiura Y, Setou M, Ichiyanagi Y (2009) Magnetic nanoparticle-based mass spectrometry for the detection of biomolecules in cultured cells. J Nanosci Nanotechnol 9:169–176

    Article  CAS  PubMed  Google Scholar 

  10. Taira S, Sugiura Y, Moritake S, Shimma S, Ichiyanagi Y, Setou M (2008) Nanoparticle-assisted laser desorption/ionization based mass imaging with cellular resolution. Anal Chem 80:4761–4766

    Article  CAS  PubMed  Google Scholar 

  11. Harada T, Yuba-Kubo A, Sugiura Y, Zaima N, Hayasaka T, Goto-Inoue N, Wakui M, Suematsu M, Takeshita K, Ogawa K, Yoshida Y, Setou M (2009) Visualization of volatile substances in different organelles with an atmospheric-pressure mass microscope. Anal Chem 81:9153–9157

    Article  CAS  PubMed  Google Scholar 

  12. Sugiura Y, Setou M (2010) Imaging mass spectrometry for visualization of drug and endogenous metabolite distribution: toward in situ pharmacometabolomes. J Neuroimmune Pharmacol 5:31–63

    Article  PubMed  Google Scholar 

  13. Zaima N, Matsuyama Y, Setou M (2009) Principal component analysis of direct matrix-assisted laser desorption/ionization mass spectrometric data related to metabolites of fatty liver. J Oleo Sci 58:267–273

    CAS  PubMed  Google Scholar 

  14. Zaima N, Hayasaka T, Goto-Inoue N, Setou M (2009) Imaging of metabolites by MALDI mass spectrometry. J Oleo Sci 58:415–419

    CAS  PubMed  Google Scholar 

  15. Sugiura Y, Setou M (2009) Selective imaging of positively charged polar and nonpolar lipids by optimizing matrix solution composition. Rapid Commun Mass Spectrom 23:3269–3278

    Article  CAS  PubMed  Google Scholar 

  16. Kimura Y, Tsutsumi K, Sugiura Y, Setou M (2009) Medical molecular morphology with imaging mass spectrometry. Med Mol Morphol 42:133–137

    Article  CAS  PubMed  Google Scholar 

  17. Hayasaka T, Goto-Inoue N, Sugiura Y, Zaima N, Nakanishi H, Ohishi K, Nakanishi S, Naito T, Taguchi R, Setou M (2008) Matrixassisted laser desorption/ionization quadrupole ion trap time-of-flight (MALDI-QIT-TOF)-based imaging mass spectrometry reveals a layered distribution of phospholipid molecular species in the mouse retina. Rapid Commun Mass Spectrom 22:3415–3426

    Article  CAS  PubMed  Google Scholar 

  18. Nygren H, Malmberg P (2007) High resolution imaging by organic secondary ion mass spectrometry. Trends Biotechnol 25:499–504

    Article  CAS  PubMed  Google Scholar 

  19. Ostrowski SG, Kurczy ME, Roddy TP, Winograd N, Ewing AG (2007) Secondary ion MS imaging to relatively quantify cholesterol in the membranes of individual cells from differentially treated populations. Anal Chem 79:3554–3560

    Article  CAS  PubMed  Google Scholar 

  20. Sjovall P, Lausmaa J, Nygren H, Carlsson L, Malmberg P (2003) Imaging of membrane lipids in single cells by imprint-imaging time-of-flight secondary ion mass spectrometry. Anal Chem 75: 3429–3434

    Article  PubMed  Google Scholar 

  21. Roddy TP, Cannon DM, Jr Meserole CA, Winograd N, Ewing AG (2002) Imaging of freeze-fractured cells with in situ fluorescence and time-of-flight secondary ion mass spectrometry. Anal Chem 74:4011–4019

    Article  CAS  PubMed  Google Scholar 

  22. Altelaar AF, Klinkert I, Jalink K, de Lange RP, Adan RA, Heeren RM, Piersma SR (2006) Gold-enhanced biomolecular surface imaging of cells and tissue by SIMS and MALDI mass spectrometry. Anal Chem 78:734–742

    Article  CAS  PubMed  Google Scholar 

  23. Konishi Y, Setou M (2009) Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat Neurosci 12:559–567

    Article  CAS  PubMed  Google Scholar 

  24. Ikegami K, Heier RL, Taruishi M, Takagi H, Mukai M, Shimma S, Taira S, Hatanaka K, Morone N, Yao I, Campbell PK, Yuasa S, Janke C, Macgregor GR, Setou M (2007) Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc Natl Acad Sci U S A 104:3213–3218

    Article  CAS  PubMed  Google Scholar 

  25. Setou M, Seog DH, Tanaka Y, Kanai Y, Takei Y, Kawagishi M, Hirokawa N (2002) Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature (Lond) 417: 83–87

    Article  CAS  Google Scholar 

  26. Vance JE, Campenot RB, Vance DE (2000) The synthesis and transport of lipids for axonal growth and nerve regeneration. Biochim Biophys Acta 1486:84–96

    CAS  PubMed  Google Scholar 

  27. Ikegami K, Koike T (2003) Non-apoptotic neurite degeneration in apoptotic neuronal death: pivotal role of mitochondrial function in neurites. Neuroscience 122:617–626

    Article  CAS  PubMed  Google Scholar 

  28. Ikegami K, Kato S, Koike T (2004) N-Alpha-p-tosyl-l-lysine chloromethyl ketone (TLCK) suppresses neuritic degeneration caused by different experimental paradigms including in vitro Wallerian degeneration. Brain Res 1030:81–93

    Article  CAS  PubMed  Google Scholar 

  29. Argiro V, Johnson MI (1982) Patterns and kinetics of neuritic extension from sympathetic neurons in culture are age dependent. J Neurosci 2:503–512

    CAS  PubMed  Google Scholar 

  30. Monroe EB, Jurchen JC, Lee J, Rubakhin SS, Sweedler JV (2005) Vitamin E imaging and localization in the neuronal membrane. J Am Chem Soc 127:12152–12153

    Article  CAS  PubMed  Google Scholar 

  31. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed  Google Scholar 

  32. Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    Article  CAS  PubMed  Google Scholar 

  33. de Chaves EP, Bussiere M, MacInnis B, Vance DE, Campenot RB, Vance JE (2001) Ceramide inhibits axonal growth and nerve growth factor uptake without compromising the viability of sympathetic neurons. J Biol Chem 276:36207–36214

    Article  PubMed  Google Scholar 

  34. Hauser H, Howell K, Dawson RM, Bowyer DE (1980) Rabbit small intestinal brush border membrane preparation and lipid composition. Biochim Biophys Acta 602:567–577

    Article  CAS  PubMed  Google Scholar 

  35. Sugiura Y, Konishi Y, Zaima N, Kajihara S, Nakanishi H, Taguchi R, Setou M (2009) Visualization of the cell-selective distribution of PUFA-containing phosphatidylcholines in mouse brain by imaging mass spectrometry. J Lipid Res 50:1776–1788

    Article  CAS  PubMed  Google Scholar 

  36. Fletcher JS, Lockyer NP, Vaidyanathan S, Vickerman JC (2007) TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C60) primary ions. Anal Chem 79:2199–2206

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsutoshi Setou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, HJ., Ishizaki, I., Sanada, N. et al. Detection of characteristic distributions of phospholipid head groups and fatty acids on neurite surface by time-of-flight secondary ion mass spectrometry. Med Mol Morphol 43, 158–164 (2010). https://doi.org/10.1007/s00795-009-0487-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-009-0487-2

Key words

Navigation