Skip to main content

Advertisement

Log in

New insights into the dynamics of sinusoidal endothelial fenestrae in liver sinusoidal endothelial cells

  • Award Review
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Ultrastructural studies have shown that liver sinusoidal endothelial cells (LSECs) contain a cytoskeletal framework of filamentous actin, and that the presence of actin in the form of a calmodulin—actomyosin complex is responsible for regulation of the diameter of sinusoidal endothelial fenestrae (SEF). Rho has emerged as an important regulator of the actin cytoskeleton and consequently of cell morphology. We investigated actin filaments in relation to SEF in LSEC using heavy meromyosin decorated reaction and elucidated the roles of Rho and actin cytoskeleton in morphological and functional alterations of SEF. Second, according to intracytoplasmic Ca2+ concentration, plasma membrane Ca2+Mg2+-ATPase activities were clearly demonstrated on the outer surface of the labyrinth-like SEF in the isolated LSECs. Furthermore, by investigating intracytoplasmic Ca2+ concentration, we have demonstrated plasma membrane Ca2+-Mg2+-ATPase activities on the outer surface of the labyrinth-like SEF in the isolated LSECs. Currently, the majority of fenestral studies are focused on finding ways to increase the liver sieve’s porosity, which is reduced through pathological mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wisse E (1970) An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res 31:125–150

    Article  PubMed  CAS  Google Scholar 

  2. Wisse E, De Zanger RB, Jacobs R, McCuskey RS (1983) Scanning electron microscope observations on the structure of portal veins, sinusoids and central veins in rat liver. Scan Electron Microsc 3: 1441–1452

    Google Scholar 

  3. Braet F (2004) How molecular microscopy revealed new insights in the dynamics of hepatic endothelial fenestrae in the past decade. Liver Int 24:532–539

    Article  PubMed  Google Scholar 

  4. Babbs C, Haboubi NY, Mellor JM, Smith A, Rowan BP, Warnes TW (1990) Endothelial cell transformation in primary biliary cirrhosis: a morphological and biochemical study. Hepatology 11: 723–729

    Article  PubMed  CAS  Google Scholar 

  5. Fraser R, Dobbs BR, Rogers GWT (1995) Lipoproteins and the liver sieve: the role of the fenestrated sinusoidal endothelium in lipoprotein metabolism, atherosclerosis, and cirrhosis. Hepatology 21:863–874

    PubMed  CAS  Google Scholar 

  6. Le Couteur DG, Fraser R, Cogger VC, McLean AJ (2002) Hepatic pseudocapillarisation and atherosclerosis in ageing. Lancet 359: 1612–1615

    Article  PubMed  Google Scholar 

  7. Liu P, Rudick M, Anderson RG (2002) Multiple functions of caveolin-1. J Biol Chem 277:41295–41298

    Article  PubMed  CAS  Google Scholar 

  8. Carafoli E (1987) Intracellular calcium homeostasis. Annu Rev Biochem 56:129–153

    Article  Google Scholar 

  9. Fujimoto T (1993) Calcium pump of the plasma membrane is localized in caveolae. J Cell Biol 120:1147–1157

    Article  PubMed  CAS  Google Scholar 

  10. Bundgaard M, Hageman P, Crone C (1983) The three dimensional organization of plasmalemmal vesicular profiles in the endothelium of rat heart capillaries. Microvasc Res 25:358–368

    Article  PubMed  CAS  Google Scholar 

  11. Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W (1998) Vascular endothelial growth factor induces endothelial fenestration in vitro. J Cell Biol 140:947–959

    Article  PubMed  CAS  Google Scholar 

  12. Feng D, Nagy JA, Pyne K, Hammel, Dvorak HF, Dvorak A (1999) Pathways of macromolecular extravasation across microvascular endothelium in response to VPF/VEGF and other vasoactive mediators. Microcirculation 6:23–44

    Article  PubMed  CAS  Google Scholar 

  13. Ogi M, Yokomori H, Oda M, Nakamura M, Ishii H, Kamegaya Y, Motoori T (1998) A novel immunocytochemical staining method that preserves cell membranes: application for demonstrating Ca2+ pump-ATPase in the liver. Med Electron Microsc 31:100–108

    Article  CAS  Google Scholar 

  14. Ogi M, Yokomori H, Kamegaya Y, Oda M, Ishii H (2000) Expression of plasma membrane Ca++-ATPase on hepatic sinusoidal endothelial fenestrae: modification of one step method. Med Electron Microsc 33:143–150

    Article  PubMed  CAS  Google Scholar 

  15. Yokomori H, Oda M, Ogi M, Kamegaya Y, Tsukada N, Nakamura M, Ishii H (2000) Hepatic sinusoidal endothelial fenestrae express plasma membrane Ca++pump and Ca++Mg++-ATPase. Liver 20: 458–464

    Article  PubMed  CAS  Google Scholar 

  16. Oda M, Nakamura M, Watanabe N, Ohya Y, Sekuzuka E, Tsukada N, Yonei Y, Komatsu H, Nagata H, Tsuchiya M (1983) Some dynamic aspects of the hepatic microcirculation: demonstration of sinusoidal endothelial fenestrae as a possible regulatory factor. In: Tsuchiya M, Wayland H, Oda M, Okazaki I (eds) Intravital observation of organ microcirculation. Excerpta Medica, Amsterdam, pp 105–138

    Google Scholar 

  17. Oda M, Tsukada N, Komatsu H, Kaneko K, Nakamura M, Tsuchiya M (1986) Electron microscopic localizations of actin, calmodulin and calcium in the hepatic sinusoidal endothelium in the rat. In: Kirn A, Knook DL, Wisse E (eds) Cells of the hepatic sinusoid, vol 1. Kupffer Cell Foundation, Rijswijk, pp 511–512

    Google Scholar 

  18. Van Der Smissen P, Van Bossuyt H, Charels K, Wisse E (1986) The structure and function of the cytoskeleton in sinusoidal endothelial cells in the rat liver. In: Kirn A, Knook DL, Wisse E (eds) Cells of the hepatic sinusoid, vol 1. Kupffer Cell Foundation, Rijswijk, pp 517–552

    Google Scholar 

  19. Oda M, Tsukada N, Komatsu H, Kaneko K, Nakamura M, Tsuchiya M (1986) Electron microscopic localizations of actin, calmodulin and calcium in the hepatic sinusoidal endothelium in the rat. In: Kirn A, Knook DL, Wisse E (eds) Cells of the hepatic sinusoid, vol 1. Kupffer Cell Foundation, Rijswijk, pp 511–512

    Google Scholar 

  20. Braet F, De Zanger R, Baekeland M, Crabbé E, Van Der Smissen P, Wisse E (1995) Structure and dynamics of the fenestrae-associated cytoskeleton of rat liver sinusoidal endothelial cells. Hepatology 21:180–189

    PubMed  CAS  Google Scholar 

  21. Braet F, Spector I, De Zanger R, Wisse E (1998) A novel structure involved in the formation of liver endothelial cell fenestrae revealed using the actin inhibitor misakinolide. Proc Natl Acad Sci U S A 95:13635–13640

    Article  PubMed  CAS  Google Scholar 

  22. Braet F, Muller M, Vekemans K, Wisse E, Le Couteur DG (2003) Antimycin A-induced defenestration in rat hepatic sinusoidal endothelial cells. Hepatology 38:394–402

    Article  PubMed  CAS  Google Scholar 

  23. Nagai T, Yokomori H, Yoshimura K, Fujimaki K, Nomura M, Hibi T, Oda M (2004) Actin filaments around sinusoidal endothelial fenestrae in rat hepatic endothelial cells. Med Electron Microsc 2004;37:252–255

    Article  PubMed  Google Scholar 

  24. Nobes CD, Hall A (1995) Rho, Rac, and Cdc 42 GTPases regulate the assembly of multi-molecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81: 53–62

    Article  PubMed  CAS  Google Scholar 

  25. Yokomori H, Yoshimura K, Funakoshi S, Nagai T, Fujimaki K, Nomura M, Ishii H, Oda M (2004) Rho modulates hepatic sinusoidal endothelial fenestrae via regulation of the actin cytoskeleton in rat endothelial cells. Lab Invest 84:857–864

    Article  PubMed  CAS  Google Scholar 

  26. Tsukada N, Azuma T, Phillips MJ (1994) Isolation of the bile canalicular actin-myosin II motor. Proc Natl Acad Sci U S A 91:6919–6923

    Article  PubMed  CAS  Google Scholar 

  27. Le Couteur DG, Cogger VC, Markus AM, Harvey PJ, Yin ZL, Annselin AD, McLean AJ (2001) Pseudocapillarization and associated energy limitation in the aged rat liver. Hepatology 33:537–543

    Article  PubMed  Google Scholar 

  28. Deleve LD, Wang X, Hu L, McCuskey MK, McCuskey RS (2004) Rat liver sinusoidal endothelial cell phenotype is maintained by paracrine and autocrine regulation. Am J Physiol Gastrointest Liver Physiol 287:G757–G763

    Article  PubMed  CAS  Google Scholar 

  29. Saito M, Matsuura T, Nagatsuma K, Tanaka K, Maehashi H, Shimizu K, Hataba Y, Kato F, Kashimori I, Tajiri H, Braet F (2007) The functional interrelationship between gap junctions and fenestrae in endothelial cells of the liver organoid. J Membr Biol 14: 1424–1432

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Yokomori.

Additional information

Dr. Hiroaki Yokomori, of the Department of Internal Medicine, Kitasato Medical Center Hospital, Saitama, Japan, is the winner of the Japanese Society for Clinical Molecular Morphology Award for Promoting Young Researchers in 2007. Dr. Yokomori was recognized for his great contribution in elucidating the role of sinusoidal endothelial fenestrae in the physiology and pathology of the liver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokomori, H. New insights into the dynamics of sinusoidal endothelial fenestrae in liver sinusoidal endothelial cells. Med Mol Morphol 41, 1–4 (2008). https://doi.org/10.1007/s00795-007-0390-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-007-0390-7

Key words

Navigation