Skip to main content

Advertisement

Log in

Antioxidant enzyme immunoreactivity in rat von Ebner gland after nickel treatment

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Our study was designed to clarify the role of antioxidant enzymes in the rat von Ebner gland during acute nickel toxicity. After treatment with nickel acetate, we monitored ultrastructural alterations in acinar and ductal cells, immunohistochemical staining for glutathione peroxidase (GPx) and glutathione S-transferases (GST mu and GST pi), and immunoreactivity for malondialdehyde (MDA). Immunoreactivity for MDA was present only in the acinar cells, and it was enhanced at 3 h after Ni treatment. In contrast, immunoreactivities for GPx and GSTs did not change in acinar cells but significantly increased in ductal cells after Ni treatment. Cytoplasmic vacuoles increased in acinar cells at 3 h after Ni treatment, but they almost completely disappeared at 24 h. No morphological changes were observed in taste bud cells from Ni-treated rats. Because lipid peroxidation, as monitored by immunoreactivity for MDA, was only transiently increased in the acinar cells, the enhanced antioxidant enzyme immunoreactivity in ductal cells of the von Ebner gland plays a crucial role in the self-defense system against nickel toxicity in the rat oral cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aitio A (1984) Biological monitoring of occupational exposure to nickel. In: Sunderman FW Jr (ed) Nickel in the human environment: proceedings of a joint symposium, March 1983, Lyon, France. IARC scientific publication no. 53. International Agency for Research on Cancer, Lyon, France, pp 497–505

    Google Scholar 

  2. Grandjean P (1984) Human exposure to nickel. In: Sunderman FW Jr (ed) Nickel in the human environment: proceedings of a joint symposium, March 1983, Lyon, France. IARC scientific publication no. 53. International Agency for Research on Cancer, Lyon, France, pp 469–480

    Google Scholar 

  3. Block GT, Yeung M (1982) Asthma induced by nickel. JAMA 247:1600–1602

    Article  PubMed  CAS  Google Scholar 

  4. Davies JE (1986) Occupational asthma caused by nickel salts. J Soc Occup Med 36:29–31

    Article  PubMed  CAS  Google Scholar 

  5. Costa M, Mollenhauer HH (1980) Phagocytosis of nickel subsul-fide particles during the early stages of neoplastic transformation in tissue culture. Cancer Res 40:2688–2693

    PubMed  CAS  Google Scholar 

  6. Costa M, Heck JD (1984) Perspectives on the mechanism of nickel carcinogenesis. Adv Inorg Biochem 6:285–309

    PubMed  CAS  Google Scholar 

  7. Oller AR, Costa M, Oberdrster G (1997) Carcinogenicity assessment of selected nickel compounds. Toxicol Appl Pharmacol 1143:152–166

    Article  Google Scholar 

  8. Emmett EA, Risby TH, Jiang L, Ng SK, Feinman S (1988) Allergic contact dermatitis to nickel: bioavailability from consumer products and provocation threshold. J Am Acad Dermatol 19:314–322

    PubMed  CAS  Google Scholar 

  9. Estlander T, Kanerva L, Tupasela O, Keskinen H, Jolanki R (1993) Immediate and delayed allergy to nickel with contact urticaria, rhinitis, asthma and contact dermatitis. Clin Exp Allergy 23: 306–310

    Article  PubMed  CAS  Google Scholar 

  10. Henkin RI, Brandley DF (1970) Hypogeusia corrected by Ni++ and Zn++. Life Sci II 9:701–709

    Article  PubMed  CAS  Google Scholar 

  11. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  12. Sunderman FW (1989) Mechanisms of nickel carcinogenesis. Scand J Work Environ Health 15:1–12

    PubMed  CAS  Google Scholar 

  13. Rodriguez RE, Misra M, Kasprzak KS (1990) Effects of nickel on catalase activity in vitro and in vivo. Toxicology 63:45–52

    Article  PubMed  CAS  Google Scholar 

  14. Sirover MA, Loeb LA (1976) Metal activation of DNA synthesis. Biochem Biophys Res Commun 70:812–817

    Article  PubMed  CAS  Google Scholar 

  15. Patierno SR, Costa M (1987) Effects of nickel (II) on nuclear protein binding to DNA in intact mammalian cells. Cancer Biochem Biophys 9:113–126

    PubMed  CAS  Google Scholar 

  16. Haugaard N (1968) Cellular mechanism of oxygen toxicity. Physiol Rev 48:311–373

    PubMed  CAS  Google Scholar 

  17. Matès JM, Pèrez-Gòmez C, Nùñez de Castro I (1999) Antioxidant enzymes and human diseases. Clin Biochem 32:595–603

    Article  PubMed  Google Scholar 

  18. Tanikawa K, Torimura T (2006) Studies on oxidative stress in liver diseases: important future trends in liver research. Med Mol Morphol 39:22–27

    Article  PubMed  CAS  Google Scholar 

  19. Flora SJ (2007) Role of free radicals and antioxidants in health and disease. Cell Mol Biol 53:1–2

    PubMed  CAS  Google Scholar 

  20. Matès JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153:83–104

    Article  PubMed  Google Scholar 

  21. Flohè L, Gunzler WA, Schock HH (1973) Glutathione peroxidase: a selenoenzyme. FEBS Lett 32:132–134

    Article  PubMed  Google Scholar 

  22. Meyer DJ, Beale D, Tan KH, Coles B, Ketterer B (1985) Glutathione transferases in primary rat hepatomas: the isolation of a form with GSH peroxidase activity. FEBS Lett 184:139–143

    Article  PubMed  CAS  Google Scholar 

  23. Ishikawa T, Esterbauer H, Sies H (1986) Role of cardiac glutathione transferase and of the glutathione S-conjugate export system in biotransformation of 4-hydroxynonenal in the heart. J Biol Chem 261:1576–1581

    PubMed  CAS  Google Scholar 

  24. Jakoby WB (1978) The glutathione S-transferase: a group of multifunctional detoxification protein. Adv Enzymol Relat Areas Mol Biol 46:384–414

    Google Scholar 

  25. Salinas AE, Wong MG (1999) Glutathione S-transferase: a review. Curr Med Chem 6:279–309

    PubMed  CAS  Google Scholar 

  26. Mannervik B, Danielson UH (1988) Glutathione transferase: structure and catalytic activity. Crit Rev Biochem 23:283–337

    Article  CAS  Google Scholar 

  27. Meyer DJ, Coles B, Pemble SE, Gilmore KS, Fraser GM, Ketterer B (1991) Theta, a new class of glutathione transferases purified from rat and man. Biochem J 274:409–414

    PubMed  CAS  Google Scholar 

  28. Fujimoto S, Murray RG (1970) Fine structure of degeneration and regeneration in denervated rabbit vallate taste buds. Anat Rec 168:393–414

    Article  Google Scholar 

  29. Thaete LG, Crouch RK, Spicer SS (1985) Immunolocalization of copper-zinc superoxide dismutase. J Histochem Cytochem 33: 803–808

    PubMed  CAS  Google Scholar 

  30. Yamamoto H, Sasaki J, Nomura T, Nawa T (1999) Expression of manganese superoxide dismutase in rat submandibular gland demonstrated by in situ hybridization and immunohistochemistry. Ann Anat 181:519–522

    Article  PubMed  CAS  Google Scholar 

  31. Coleman RA, Hanker JS (1978) Catalase in salivary gland striated and excretory duct cells. III. Immunocytochemical demonstration with fluorescein and peroxidase-labelled antibodies. Histochem J 10:377–387

    Article  PubMed  CAS  Google Scholar 

  32. Campbell JAH, Corrigall AV, Guy A, Kirsch RE (1991) Immunohistologic localization of alpha, mu, and pi class glutathione S-transferases in human tissues. Cancer (Phila) 67:1608–1613

    Article  CAS  Google Scholar 

  33. Palinski W, Herttula SY, Rosenfeld ME, Butler SW, Socher SA, Parthasathy S, Curtiss LK, Witztum JL (1990) Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis 10: 325–335

    PubMed  CAS  Google Scholar 

  34. Yamada S, Kumazawa S, Ishii T, Nakayama T, Itakura K, Shibata N, Kobayashi M, Sakai K, Osawa T, Uchida K (2001) Immunochemical detection of a lipofuscin-like fluorophore derived from malondialdehyde and lysine. J Lipid Res 42:1187–1196

    PubMed  CAS  Google Scholar 

  35. Morita M, Kudo H, Doi Y, Hirano T, Ikemura K, Fujimoto S (2002) Enhanced immunocytochemical expression of antioxidant enzymes in rat submandibular gland after normobaric oxygenation. Anat Rec 268:371–380

    Article  PubMed  CAS  Google Scholar 

  36. Muse KE, Oberley TD, Sempf JM, Oberley LW (1994) Immunolocalization of antioxidant enzymes in adult hamster kidney. Histochem J 26:734–753

    Article  PubMed  CAS  Google Scholar 

  37. Nishino T, Kudo H, Doi Y, Maeda M, Hamasaki K, Morita M, Fujimoto S (2001) Immunocytochemistry of glutathione S-transferase in taste bud cells of rat circumvallate and foliate papillae. Chem Senses 26:179–188

    Article  PubMed  CAS  Google Scholar 

  38. Fong KL, McCay PB, Poyer JL (1973) Evidence that peroxidation of lysosomal membranes is initiated by hydroxyl free radicals produced during flavin enzyme acitivity. J Biol Chem 248:7792–7797

    PubMed  CAS  Google Scholar 

  39. Lledìas F, Rangel P, Hansberg W (1998) Oxidation of catalase by singlet oxygen. J Biol Chem 273:10630–10637

    Article  PubMed  Google Scholar 

  40. Fujita H, Haseyama T, Kayo T, Nozaki J, Wada Y, Ito S, Koizumi A (2001) Increased expression of glutathione S-transferase in renal proximal tubules in the early stages of diabetes: a study of type-2 diabetes in the Akita mouse model. Exp Nephrol 9:380–386

    Article  PubMed  CAS  Google Scholar 

  41. Carlsson J (1987) Salivary peroxidase: an important part of our defense against oxygen toxicity. J Oral Pathol 16:412–416

    PubMed  CAS  Google Scholar 

  42. Kiser C, Caterina J, Engler JA, Rahemtulla B, Rahemtulla F (1996) Cloning and sequence analysis of the human salivary peroxidase-encoding cDNA. Gene (Amst) 173:261–264

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunao Fujimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiraishi, M., Doi, Y., Kayashima, K. et al. Antioxidant enzyme immunoreactivity in rat von Ebner gland after nickel treatment. Med Mol Morphol 41, 44–52 (2008). https://doi.org/10.1007/s00795-007-0386-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-007-0386-3

Key words

Navigation