Skip to main content

Fairy ring disease affects epiphytic algal assemblages associated with the moss Sanionia uncinata (Hedw.) Loeske (Bryophyta) on King George Island, Antarctica

Abstract

Since the nineteenth century, a ring-forming disease attacking Antarctic mosses has been reported. However, to date, only the effects on the mosses themselves are known. In this study, we used DNA metabarcoding to investigate the effects on the moss epiphytic algal community at different stages of disease progression. As the disease progressed, algal species richness decreased, although overall abundance was not significantly affected. Prasiolales appeared unaffected, whereas Ulotrichales were more sensitive. Trebouxiales dominated the advanced disease stage, suggesting a possible benefit from the disease, either through the elimination of competition or creation of new niches. Infection is responsible for moss death, leading to habitat loss for other organisms, but pathogenic effects on algae cannot be ruled out. Our data indicate that the disease not only impacts mosses but also other groups, potentially resulting in loss of Antarctic biodiversity. This study provides the first report of the disease effects on epiphytic algal communities of Antarctic bryophytes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Banchi E, Ametrano CG, Greco S, Stanković D, Muggia L, Pallavicini A (2020) PLANiTS: a curated sequence reference dataset for plant ITS DNA metabarcoding. J Biol Databases Curation. https://doi.org/10.1093/database/baz155

    Article  Google Scholar 

  2. Bednarek-Ochyra H, Vana J, Ochyra R, Smith RIL (2000) The liverwort flora of Antarctica. Polish Academy of Sciences, Krakow

    Google Scholar 

  3. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Meth 10:57–59. https://doi.org/10.1038/nmeth.2276

    CAS  Article  Google Scholar 

  4. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttey GA, Caporaso JG (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90. https://doi.org/10.1186/s40168-018-0470-z

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith A, Alexander H, Alm EJ, Arumugan M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Chase J, Cope EK, Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzales A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu Y, Loftfield LC, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS II, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasa S, van der Hoof JJJ, Vargas F, Vazques-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotech 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    CAS  Article  Google Scholar 

  6. Bott TL, Rogenmuser K (1980) Fungal pathogen of Cladophora glomerata (Chlorophyta). Appl Environ Microbiol 40:977

    CAS  Article  Google Scholar 

  7. Câmara PEAS, Carvalho-Silva M (2020) 180 years of botanical investigations in Antarctica and the role of Brazil. Acta Bot Bras 34:430–436. https://doi.org/10.1590/0102-33062020abb0172

    Article  Google Scholar 

  8. Câmara PEAS, Soares AER, Henriques DK, Peralta DF, Bordin J, Carvalho Silva M, Stech M (2019) New insights into the species diversity of Bartramia Hedw. (Bryophyta) in Antarctica from a morpho-molecular approach. Antarct Sci 31:208–215

    Article  Google Scholar 

  9. Câmara PEAS, Carvalho-Silva M, Pinto OHB, Amorim ET, Henriques DK, Silva TH, Pellizzari F, Convey P, Rosa LH (2020) Diversity and ecology of Chlorophyta (Viridiplantae) assemblages in protected and non-protected sites in Deception Island (Antarctica, South Shetland Islands) assessed using an NGS approach. Microb Ecol 81:323–334. https://doi.org/10.1007/s00248-020-01584-9

    CAS  Article  PubMed  Google Scholar 

  10. Câmara PEAS, Convey P, Rangel SB, Konrath M, Barreto CC, Pinto OHB, Carvalho-Silva M, Henriques DK, Oliveira HC, Rosa LH (2021) The largest moss carpet transplant in Antarctica and its bryosphere cryptic biodiversity. Extremophiles 25:369–384. https://doi.org/10.1007/s00792-021-01235-y

    CAS  Article  PubMed  Google Scholar 

  11. Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67. https://doi.org/10.1890/13-0133.1

    Article  Google Scholar 

  12. Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X, Luo K, Li Y, Li X, Jia X, Lin Y, Leon C (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5:e8613. https://doi.org/10.1371/journal.pone.0008613

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Convey P (2017) Antarctic ecosystems. Encycl Biodivers 1:179–187. https://doi.org/10.1126/science.1104235

    CAS  Article  Google Scholar 

  14. Convey P, Chown SL, Clarke A, Barnes DKA, Bokhorst S, Cummings V, Ducklow HW, Frati F, Green TGA, Gordon S, Griffiths HJ, Howard-Williams C, Huiskes AHL, Laybourn-Parry J, Lyons WB, Mcminn A, Morley SA, Peck LS, Quesada A, Schiaparelli RSA (2014) The spatial structure of Antarctic biodiversity. Ecol Monogr 84:203–244. https://doi.org/10.1890/12-2216.1

    Article  Google Scholar 

  15. Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, Creer S, Bista I, Lodge DM, deVere N, Pfrender ME, Bernatchez L (2017) Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molec Ecol 26:5872–5895. https://doi.org/10.1111/mec.14350

    Article  Google Scholar 

  16. Ellis LT, Asthana AK, Gupta R, Nath V, Sahu V, Bednareck-Ochyra H, Ochyra R, Cykowska B, Calvo Aranda S, Fischer E, Gabriel R, Gosrski P, Gremmen N, Hespanhol H, Kurbatova LE, Lewsis-Smith RI, Long DG, Bell D, Mogro F, Sergio C, Garcia CA, Stow S, Martins A, Mith VR, Vana J, Vanderpoorten A (2013a) New national and regional bryophyte records, 34. J Bryol 35:62–70. https://doi.org/10.1179/1743282012Y.0000000042

    Article  Google Scholar 

  17. Ellis LT, Bednarek-Ochyra H, Ochyra R, Benjumea MJ, Saïs LV, Caparrós R, Lara Mazimpaka V, Dulin MV, Garilleti R, Gremmen N, Grundling P-L, Heras P, Infante M, Huttunens S, Ignatov MS, Korvenpää T, Lebouvier L-S, Lin S-H, Yang JD, Linström A, Novotný I, Plášek V, Rosselló JA, Sawicki J, Van Rooy J, Smith VR (2013b) New national and regional bryophyte records. J Bryol 35:129–139. https://doi.org/10.1179/1743282013Y.0000000049

    Article  Google Scholar 

  18. Evershed H (1884) Fairy rings. Nature. https://doi.org/10.1038/029384e0

    Article  Google Scholar 

  19. Fenton JHC (1983) Concentric fungal rings in Antarctic moss communities. Trans Brit Mycol Soc 80:415–420. https://doi.org/10.1016/S0007-1536(83)80038-2

    Article  Google Scholar 

  20. Giner CR, Forn I, Romac S, Logares R, de Vargas C, Massana R (2016) Environmental sequencing provides reasonable estimates of the relative abundance of specific picoeukaryotes. Appl Environ Microbiol 82:4757–4766. https://doi.org/10.1128/AEM.00560-16

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Glime JM (2017) The Fauna: A Place to Call Home. Chapter 1 In: Glime JM. Bryophyte Ecology. Volume 2. Bryological 1–1–1 Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Available at: https://digitalcommons.mtu.edu/bryophyte-ecology2/. Accessed 18 July 2020

  22. Hawksworth DL (1973) Thyronectria antarctica (Speg.) Seeler var. hyperantarctica D. Hawksw Var Nov Brit Antarct Surv Bull 32:51–53

    Google Scholar 

  23. Hering D, Borja A, Jones JI, Pont D, Boets P, Bouchez A, Bruce K, Drakare S, Hänfling B, Kahlert M, Leese F, Meissner K, Mergen P, Reyjol Y, Segurado P, Vogler A, Kelly M (2018) Implementation options for DNA-based identification into ecological status assessment under the European water framework directive. Water Res 138:192–205. https://doi.org/10.1016/j.watres.2018.03.003

    CAS  Article  PubMed  Google Scholar 

  24. Joshi NA, Fass JN (2011) Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. https://github.com/najoshi/sickle. Accessed July 2020

  25. Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46. https://doi.org/10.1080/07352689.2011.615705

    Article  Google Scholar 

  26. Longton RE (1973) The occurrence of radial infection patterns in colonies of polar bryophytes. Brit Antarct Surv Bull 32:41–49

    Google Scholar 

  27. Medinger R, Nolte V, Pandey RV, Jost S, Ottenwälder B, Schlötterer C, Boenigk J (2010) Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Molec Ecol 19:32–40. https://doi.org/10.1111/j.1365-294X.2009.04478.x

    Article  Google Scholar 

  28. Mieczan T, Adamczuk M (2015) Ecology of testate amoebae (Protists) in mosses: distribution and relation of species assemblages with environmental parameters (King George Island, Antarctica). Polar Biol 38:221–230. https://doi.org/10.1007/s00300-014-1580-0

    Article  Google Scholar 

  29. Ochyra R, Smith RIL, Bednarek-Ochyra H (2008) The illustrated moss flora of Antarctica. Cambridge University Press, Cambridge

    Google Scholar 

  30. Pawłowska J, Istel L, Gorczak M, Galera H, Wrzosek M, Hawksworth DL (2017) Psychronectria hyperantarctica, gen. nov., comb. nov., epitypification and phylogenetic position of an Antarctic bryophilous ascomycete. Mycologia 109:601–607. https://doi.org/10.1080/00275514.2017.1398575

    Article  PubMed  Google Scholar 

  31. Priddle J, Dartnall HJG (1978) The biology of an Antarctic aquatic moss community. Freshwater Biol 8:469–480. https://doi.org/10.1111/j.1365-2427.1978.tb01469.x

    Article  Google Scholar 

  32. Putzke J, Pereira AB (2012) Fungos muscícolas na ilha elefante-Antártica. Cad Pesq Biol 24:155–164. https://doi.org/10.17058/cp.v24i1.4722

    Article  Google Scholar 

  33. Racovitza A (1959) Étude systematique et biologique des champignons bryophiles. Mém Mus Nati D’hist Nat Sér B Botanique 10:1–288

    Google Scholar 

  34. Richardson RT, Lin CH, Sponsler DB, Quijia JO, Goodell K, Johnson RM (2015) Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Appl Plant Sci 3:1400066. https://doi.org/10.3732/apps.1400066

    Article  Google Scholar 

  35. Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 2016:1–22. https://doi.org/10.7717/peerj.2584

    Article  Google Scholar 

  36. Rosa LH, de Sousa JRP, de Menezes GCA, Coelho LC, Carvalho-Silva M, Convey P, Câmara PEAS (2020) Opportunistic fungal assemblages present on fairy rings spread on different moss species in the Antarctic Peninsula. Polar Biol 43:587–596. https://doi.org/10.7717/peerj.2584

    Article  Google Scholar 

  37. Sollman P (2015) The genus Bryoerythrophyllum (Musci, Pottiaceae) in Antarctica. Pol Bot J 60:19–25. https://doi.org/10.1515/pbj-2015-0004

    Article  Google Scholar 

  38. Tojo M, West PV, Hoshino T, Kida K, Fujii H, Hakoda A, Kawaguchi Y, Mühllhauser A, Van den Berg AH, Küpper FC, Herrero ML, Klemsdal SS, Tronsmo AM, Kanda H (2012) Pythium polare, a new heterothallic oomycete causing brown discolouration of Sanionia uncinata in the Arctic and Antarctic. Fungal Biol 116:756–768. https://doi.org/10.1016/j.funbio.2012.04.005

    Article  PubMed  Google Scholar 

  39. Turner J, Bindschadler RA, Convey P, Di Prisco G, Fahrbach E, Gutt J, Hodgson DA, Mayewski PA, Summerhayes CP (2009) Antarctic climate change and the environment. Scientific Committee on Antarctic Research, Cambridge, p 526

    Google Scholar 

  40. Turner J, Barrand N, Bracegirdle TJ, Convey P, Hodgson DA, Jarvis M, Jenkins A, Marshall G, Meredith MP, Roscoe H, Shanklin J, French J, Goose H, Guglielmin M, Gutt J, Jacobs S, Kennicutt MC II, Masson-Delmonte V, Mayewski P, Navarro F, Robinson S, Scambos T, Sparrow M, Summerhayes C, Speer K, Klepikov A (2014) Antarctic climate change and the environment: an update. Polar Rec 50:237–259. https://doi.org/10.1017/S0032247413000296

    Article  Google Scholar 

  41. Weber AA, Pawlowski J (2013) Can abundance of protists be inferred from sequence data: a case study of Foraminifera. PLoS ONE 8:e56739. https://doi.org/10.1371/journal.pone.0056739

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. White TJ, Bruns TD, Lee SB (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis NA, Gelfand J, Sninsky J et al (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  43. Wilson JW (1951) Observations on concentric ‘fairy rings’ in Arctic moss mat. J Ecol 39:407–416. https://doi.org/10.2307/2257921

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Brazilian Antarctic Program (PROANTAR), the Brazilian Navy, Brazilian Congresswoman Jô Moraes, and Instituto de Ciências Biológicas at University of Brasilia for their support for this research.

Funding

This work is supported by CNPq, PROANTAR, INCT Criosfera 2. P. Convey is supported by NERC core funding to the British Antarctic Survey’s ‘Biodiversity, Evolution and Adaptation’ Team.

Author information

Affiliations

Authors

Contributions

PEASC, LHR, LCC, PC, and MCS designed the study. PVE and ETA performed ecological analyses; OHBP and PEASC performed bioinformatics. PEASC, LHR, and MCS secured funds, and all authors worked on the text production. ETA produced the map.

Corresponding author

Correspondence to Paulo E. A. S. Câmara.

Ethics declarations

Conflict of interest

No conflict of interest was reported by the authors.

Informed consent

The researchers certify that this study adhered to ethical and professional standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by A. Oren.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Câmara, P.E.A.S., Eisenlohr, P.V., Coelho, L.C. et al. Fairy ring disease affects epiphytic algal assemblages associated with the moss Sanionia uncinata (Hedw.) Loeske (Bryophyta) on King George Island, Antarctica. Extremophiles 25, 501–512 (2021). https://doi.org/10.1007/s00792-021-01246-9

Download citation

Keywords

  • Fairy rings
  • Fungal disease
  • Epiphytic
  • Chlorophyta