Skip to main content

Antarctica as a reservoir of planetary analogue environments

Abstract

One of the main objectives of astrobiological research is the investigation of the habitability of other planetary bodies. Since space exploration missions are expensive and require long-term organization, the preliminary study of terrestrial environments is an essential step to prepare and support exploration missions. The Earth hosts a multitude of extreme environments whose characteristics resemble celestial bodies in our Solar System. In these environments, the physico-chemical properties partly match extraterrestrial environments and could clarify limits and adaptation mechanisms of life, the mineralogical or geochemical context, and support and interpret data sent back from planetary bodies. One of the best terrestrial analogues is Antarctica, whose conditions lie on the edge of habitability. It is characterized by a cold and dry climate (Onofri et al., Nova Hedwigia 68:175–182, 1999), low water availability, strong katabatic winds, salt concentration, desiccation, and high radiation. Thanks to the harsh conditions like those in other celestial bodies, Antarctica offers good terrestrial analogues for celestial body (Mars or icy moons; Léveillé, CR Palevol 8:637–648, https://doi.org/10.1016/j.crpv.2009.03.005, 2009). The continent could be distinguished into several habitats, each with characteristics similar to those existing on other bodies. Here, we reported a description of each simulated parameter within the habitats, in relation to each of the simulated extraterrestrial environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Petit JR, Raynaud D, Lorius C, Jouzel J, Delaygue G, Barkov NI, Kotlyakov VM (2000) Historical isotopic temperature record from the Vostok ice core. Trends: a compendium of data on global change. https://doi.org/10.3334/CDIAC/cli.006

  2. Abramov A, Vishnivetskaya T, Rivkina E (2021) Are permafrost microorganisms as old as permafrost? FEMS Microbiol Ecol 97:fiaa260. https://doi.org/10.1093/femsec/fiaa260

    CAS  Article  PubMed  Google Scholar 

  3. Abyzov SS, Mitskevich IN, Poglazova MN, Barkov NI, Lipenkov VY, Bobin NE, Koudryashov BB, Pashkevich VM, Ivanov MV (2001) Microflora in the basal strata at Antarctic ice core above the Vostok lake. Adv Space Res 28:701–706. https://doi.org/10.1016/S0273-1177(01)00318-0

    CAS  Article  PubMed  Google Scholar 

  4. Achberger AM, Christner BC, Michaud AB, Priscu JC, Skidmore ML, Vick-Majors TJ, the WISSARD Science Team (2016) Microbial community structure of subglacial lake Whillans, West Antarctica. Front Microbiol 7:1457. https://doi.org/10.3389/fmicb.2016.01457

  5. Andersen DT, McKay CP, Wharton RA Jr, Rummel JD (1990) An Antarctic research outpost as a model for planetary exploration. J Br Interplanet Soc 43:499–504

    CAS  PubMed  Google Scholar 

  6. Annika CM, Murray AE, Fritsen CH (2007) Microbiota within the perennial ice cover of Lake Vida, Antarctica. FEMS Microbiol Ecol 59:274–288. https://doi.org/10.1111/j.1574-6941.2006.00220.x

    CAS  Article  Google Scholar 

  7. Archer SD, de los Ríos A, Lee KC, Niederberger TS, Cary SC, Coyne KJ, Douglas S, Lacap-Bugler DC, Pointing SB (2017) Endolithic microbial diversity in sandstone and granite from the McMurdo Dry Valleys, Antarctica. Polar Biol 40:997–1006. https://doi.org/10.1007/s00300-016-2024-9

    Article  Google Scholar 

  8. Arenz BE, Blanchette RA, Farrell RL (2014) Fungal diversity in Antarctic soils. In: Cowan D (ed) Antarctic terrestrial microbiology. Springer, Berlin, Heidelberg, pp 35–53. https://doi.org/10.1007/978-3-642-45213-0_3

  9. Ascaso C, Wierzchos J, Carmelo Corral J, López R, Alonso J (2003) New applications of light and electron microscopic techniques for the study of microbiological inclusions in amber. J Paleontol 77:1182–1192. https://doi.org/10.1666/0022-3360(2003)0772.0.CO;2

    Article  Google Scholar 

  10. Badgeley JA, Pettit EC, Carr CG, Tulaczyk S, Mikucki JA, Lyons WB (2017) An englacial hydrologic system of brine within a cold glacier: Blood Falls, McMurdo Dry Valleys, Antarctica. J Glaciol 63:387–400. https://doi.org/10.1017/jog.2017.16

    Article  Google Scholar 

  11. Badino G, Meneghel M (2001) Caves in the glaciers of Terra Nova Bay (Victoria Land, Antarctica). In: Proceedings of the 13th International congress of speleology. Brasilia, pp 235–238

  12. Bamforth SS, Wall DH, Virginia RA (2005) Distribution and diversity of soil protozoa in the McMurdo Dry Valleys of Antarctica. Polar Biol 28:756–762. https://doi.org/10.1007/s00300-005-0006-4

    Article  Google Scholar 

  13. Bandfield JL, Feldman WC (2008) Martian high latitude permafrost depth and surface cover thermal inertia distributions. J Geophys Res Planets 113:E08001. https://doi.org/10.1029/2007JE003007

    CAS  Article  Google Scholar 

  14. Barrett PJ (1996) Antarctic palaeoenvironment through Cenozoic times-a review. Terra Antartica 3:103–119

    Google Scholar 

  15. Bishop JL, Anglen BL, Pratt LM, Edwards HG, Des Marais DJ, Doran PT (2003) A spectroscopy and isotope study of sediments from the Antarctic Dry Valleys as analogues for potential paleolakes on Mars. Int J Astrobiol 2:273–287. https://doi.org/10.1017/S1473550403001654

    CAS  Article  Google Scholar 

  16. Bockheim JG, Campbell IB, McLeod M (2007) Permafrost distribution and active-layer depths in the McMurdo Dry Valleys, Antarctica. Permafr Periglac Process 18:217–227. https://doi.org/10.1002/ppp.588

    Article  Google Scholar 

  17. Borruso L, Sannino C, Selbmann L, Battistel D, Zucconi L, Azzaro M, Turchetti B, Buzzini P, Guglielmin M (2018) A thin ice layer segregates two distinct fungal communities in Antarctic brines from Tarn Flat (Northern Victoria Land). Sci Rep 8:6582. https://doi.org/10.1038/s41598-018-25079-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Borucki WJ, Agol E, Fressin F, Kaltenegger L, Rowe J, Isaacson H, Winn JN (2013) Kepler-62: a five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone. Science 340:587–590. https://doi.org/10.1126/science.1234702

    CAS  Article  PubMed  Google Scholar 

  19. Boston PJ, Spilde MN, Northup DE, Melim LA, Soroka DS, Kleina LG, Lavoie KH, Hose LD, Mallory LM, Dahm CN, Crossey LJ, Schelble RT (2001) Cave biosignature suites: microbes, minerals, and Mars. Astrobiology 1:25–55. https://doi.org/10.1089/153110701750137413

    CAS  Article  PubMed  Google Scholar 

  20. Boston PJ, Frederick RD, Welch SM, Werker J, Meyer TR, Sprungman B, Hildreth-Werker V, Thompson SL (2004) Extraterrestrial subsurface technology test bed: Human use and scientific value of Martian caves. AIP Conf Proc 699:1007–1018. https://doi.org/10.1063/1.1649667

    Article  Google Scholar 

  21. Bowman JP, McCammon SA, Brown JL, Nichols PD, McMeekin TA (1997) Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov., psychrophilic bacteria isolated from Antarctic lacustrine and sea ice habitats. Int J Syst Evol Microbiol 47:670–677. https://doi.org/10.1099/00207713-47-3-670

    CAS  Article  Google Scholar 

  22. Bowman JS, Vick-Majors TJ, Morgan-Kiss R, Takacs-Vesbach C, Ducklow HW, Prisc JC (2016) Microbial community dynamics in two polar extremes: The lakes of the McMurdo Dry Valleys and the West Antarctic Peninsula marine ecosystem. Bioscience 66:829–847. https://doi.org/10.1093/biosci/biw103

    Article  Google Scholar 

  23. Brass GW (1980) Stability of brines on Mars. Icarus 42:20–28. https://doi.org/10.1016/0019-1035(80)90237-7

    CAS  Article  Google Scholar 

  24. Brinkmeyer R, Knittel K, Jürgens J, Weyland H, Amann R, Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol 69:6610–6619. https://doi.org/10.1128/AEM.69.11.6610-6619.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Broady P, Given D, Greenfield L, Thompson K (1987) The biota and environment of fumaroles on Mt Melbourne, Northern Victoria Land. Polar Biol 7:97–113. https://doi.org/10.1007/BF00570447

    Article  Google Scholar 

  26. Bryce CC, Horneck G, Rabbow E, Edwards HG, Cockell CS, Panitz C, Martins Z (2015) Impact shocked rocks as protective habitats on an anoxic early Earth. Int J Astrobiol 14:115–122. https://doi.org/10.1017/S1473550414000123

    CAS  Article  Google Scholar 

  27. Buda J, Łokas E, Pietryka M, Richter D, Magowski W, Iakovenko NS, Porazinska DL, Budzik T, Grabiec M, Grzesiak J, Klimaszyk P, Gaca P, Zawierucha K (2020) Biotope and biocenosis of cryoconite hole ecosystems on Ecology Glacier in the maritime Antarctic. Sci Total Environ 724:138112. https://doi.org/10.1016/j.scitotenv.2020.138112

    CAS  Article  PubMed  Google Scholar 

  28. Buzzini P, Turk M, Perini L, Turchetti B, Gunde-Cimerman N (2017) Yeasts in polar and subpolar habitats. In: Buzzini P, Lachance MA, Yurkov A (eds) Yeasts in natural ecosystems: diversity. Springer, Cham, pp 331–365. https://doi.org/10.1007/978-3-319-62683-3_11

  29. Cameron RE, Ford AB (1974) Baseline analysis of soils from the Pensacola Mountains. Antarct J 9:116–119

    Google Scholar 

  30. Cameron KA, Hodson AJ, Osborn AM (2012) Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbiol Ecol 82:254–267. https://doi.org/10.1111/j.1574-6941.2011.01277.x

    CAS  Article  PubMed  Google Scholar 

  31. Canini F, Geml J, D’Acqui LP, Buzzini P, Turchetti B, Onofri S, Ventura S, Zucconi L (2021a) Fungal diversity and functionality are driven by soil texture in Taylor Valley, Antarctica. Fungal Ecol 50:101041. https://doi.org/10.1016/j.funeco.2021.101041

    Article  Google Scholar 

  32. Canini F, Geml J, Buzzini P, Turchetti B, Onofri S, D’Acqui LP, Ripa C, Zucconi L (2021b) Growth forms and functional guilds distribution of soil fungi in coastal versus Inland Sites of Victoria Land, Antarctica. Biology 10:320. https://doi.org/10.3390/biology10040320

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8:129–138. https://doi.org/10.1038/nrmicro2281

    CAS  Article  PubMed  Google Scholar 

  34. Chan Y, Lacap DC, Lau MC, Ha KY, Warren-Rhodes KA, Cockell CS, Cowan DA, McKay CP, Pointing SB (2012) Hypolithic microbial communities: between a rock and a hard place. Environ Microbiol 14:2272–2282. https://doi.org/10.1111/j.1462-2920.2012.02821.x

    Article  PubMed  Google Scholar 

  35. Chela-Flores J, Seckbach J (2011) The Dry Valley Lakes, Antarctica: a key to evolutionary biomarkers on Europa and elsewhere. In: Hoover RB, Davies PC, Levin GV, Rozanov AY (eds) Proceedings of the SPIE: instruments, methods, and missions for Astrobiology XIV. pp 81520R–81520R-8. https://doi.org/10.1117/12.898763

  36. Chela-Flores J (ed) (2011) On the possibility of biological evolution on the moons of Jupiter. In: The science of astrobiology. Cellular origin, life in extreme habitats and astrobiology, 2nd edn. Springer, Dordrecht, pp 151–170. https://doi.org/10.1007/978-94-007-1627-8_8

  37. Christner BC, Kvitko BH, Reeve JN (2003) Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183. https://doi.org/10.1007/s00792-002-0309-0

    CAS  Article  PubMed  Google Scholar 

  38. Christner BC, Royston-Bishop G, Foreman CM, Arnold BR, Tranter M, Welch KA, Lyons WB, Tsapin AI, Studinger M, Priscu JC (2006) Limnological conditions in subglacial lake Vostok, Antarctica. Limnol Oceanogr 51:2485–2501. https://doi.org/10.4319/lo.2006.51.6.2485

    Article  Google Scholar 

  39. Christner BC, Priscu JC, Achberger AM, Barbante C, Carter SP, Christianson K, Michaud AB, Mikucki JA, Mitchell AC, Skidmore ML, Vick-Majors TJ, The WISSARD Science Team (2014) A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512:310–313. https://doi.org/10.1038/nature13667

  40. Chyba CF, Hand KP (2001) Life without photosynthesis. Science 292:2026–2027. https://doi.org/10.1126/science.1060081

    CAS  Article  PubMed  Google Scholar 

  41. Clocksin KM, Jung DO, Madigan MT (2007) Cold-active chemoorganotrophic bacteria from permanently ice-covered Lake Hoare, McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 73:3077–3083. https://doi.org/10.1128/AEM.00085-07

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Coleine C, Stajich JE, Pombubpa N, Zucconi L, Onofri S, Canini F, Selbmann L (2019) Altitude and fungal diversity influence the structure of Antarctic cryptoendolithic Bacteria communities. Environ Microbiol Rep 11:718–726. https://doi.org/10.1111/1758-2229.12788

    Article  PubMed  PubMed Central  Google Scholar 

  43. Coleine C, Biagioli F, de Vera J-P, Onofri S, Selbmann L (2021) Endolithic microbial composition in Helliwell Hills, a newly investigated Mars-like area in Antarctica. Environ Microbiol 23:4002–4016. https://doi.org/10.1111/1462-2920.15419

    CAS  Article  PubMed  Google Scholar 

  44. Connell L, Staudigel H (2013) Fungal diversity in a dark oligotrophic volcanic ecosystem (DOVE) on Mount Erebus, Antarctica. Biology 2:798–809. https://doi.org/10.3390/biology2020798

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cook J, Edwards A, Takeuchi N, Irvine-Fynn T (2016a) Cryoconite: the dark biological secret of the cryosphere. Prog Phys Geogr 40:66–111. https://doi.org/10.1177/0309133315616574

    Article  Google Scholar 

  46. Cook JM, Edwards A, Bulling M, Mur LA, Cook S, Gokul JK, Cameron KA, Sweet M, Irvine-Fynn T (2016b) Metabolome-mediated biocryomorphic evolution promotes carbon fixation in Greenlandic cryoconite holes. Environ Microbiol 18:4674–4686. https://doi.org/10.1111/1462-2920.13349

    CAS  Article  PubMed  Google Scholar 

  47. Cowan DA, Tow LA (2004) Endangered Antarctic environments. Annu Rev Microbiol 58:649–690. https://doi.org/10.1146/annurev.micro.57.030502.090811

    CAS  Article  PubMed  Google Scholar 

  48. Cowan DA, Russell NJ, Mamais A, Sheppard DM (2002) Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6:431–436. https://doi.org/10.1007/s00792-002-0276-5

    CAS  Article  PubMed  Google Scholar 

  49. Cowie RO, Williams GJ, Maas EW, Voyles KM, Ryan KG (2014) Antarctic sea-ice microbial communities show distinct patterns of zonation in response to algal-derived substrates. Aquat Microb Ecol 73:123–134. https://doi.org/10.3354/ame01710

    Article  Google Scholar 

  50. Craig JR, Fortner RD, Weand BL (1974) Halite and hydrohalite from Lake Bonney, Taylor Valley, Antarctica. Geology 2:389–390. https://doi.org/10.1130/0091-7613(1974)2%3c389:HAHFLB%3e2.0.CO;2

    Article  Google Scholar 

  51. Cushing GE, Okubo CH, Titus TN (2015) Atypical pit craters on Mars: New insights from THEMIS, CTX, and HiRISE observations. J Geophys Res Planets 120:1023–1043. https://doi.org/10.1002/2014JE004735

    Article  Google Scholar 

  52. Dalton JB, Cruikshank DP, Stephan K, McCord TB, Coustenis A, Carlson RW, Coradini A (2010) Chemical composition of icy satellite surfaces. Space Sci Rev 153:113–154. https://doi.org/10.1007/s11214-010-9665-8

    CAS  Article  Google Scholar 

  53. Dartnell LR (2011) Ionizing radiation and life. Astrobiology 11:551–582. https://doi.org/10.1089/ast.2010.0528

    CAS  Article  PubMed  Google Scholar 

  54. Dartnell LR, Desorgher L, Ward JM, Coates AJ (2007) Modelling the surface and subsurface Martian radiation environment: Implications for astrobiology. Geophys Res Lett 34:L02207. https://doi.org/10.1029/2006GL027494

    Article  Google Scholar 

  55. Dartnell LR, Fallaize DR, Whiting SJ, Ward JM (2010a) Desiccation resistance of Antarctic Dry Valley bacteria isolated from contrasting locations. Antarct Sci 22:171–172. https://doi.org/10.1017/S0954102009990745

    Article  Google Scholar 

  56. Dartnell LR, Hunter SJ, Lovell KV, Coates AJ, Ward JM (2010b) Low-temperature ionizing radiation resistance of Deinococcus radiodurans and Antarctic Dry Valley bacteria. Astrobiology 10:717–732. https://doi.org/10.1089/ast.2009.0439

    CAS  Article  PubMed  Google Scholar 

  57. De Los RA, Wierzchos J, Ascaso C (2014) The lithic microbial ecosystems of Antarctica’s McMurdo Dry Valleys. Antarct Sci 26:459–477. https://doi.org/10.1017/S0954102014000194

    Article  Google Scholar 

  58. De Wever A, Leliaert F, Verleyen E, Vanormelingen P, Van der Gucht K, Hodgson DA, Sabbe K, Vyverman W (2009) Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. Proc R Soc B Biol Sci 276:3591–3599. https://doi.org/10.1098/rspb.2009.0994

    Article  Google Scholar 

  59. Devos N, Ingouff M, Loppes R, Matagne RF (1998) RUBISCO adaptation to low temperatures: a comparative study in psychrophilic and mesophilic unicellular algae. J Phycol 34:655–660. https://doi.org/10.1046/j.1529-8817.1998.340655.x

    CAS  Article  Google Scholar 

  60. Dickson JL, Head JW, Levy JS, Marchant DR (2013) Don Juan Pond, Antarctica: Near-surface CaCl 2-brine feeding Earth’s most saline lake and implications for Mars. Sci Rep 3:1166. https://doi.org/10.1038/srep01166

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Diez A (2018) Liquid water on Mars. Science 361:448–449. https://doi.org/10.1126/science.aau1829

    CAS  Article  PubMed  Google Scholar 

  62. Dolhi JM, Teufel AG, Kong W, Morgan-Kiss RM (2015) Diversity and spatial distribution of autotrophic communities within and between ice-covered Antarctic lakes (McMurdo Dry Valleys). Limnol Oceanogr 60:977–991. https://doi.org/10.1002/lno.10071

    Article  Google Scholar 

  63. Doran PT, McKay CP, Clow GD, Dana GL, Fountain AG, Nylen T, Lyons WB (2002) Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. J Geophys Res Atmos 107:ACL 13. https://doi.org/10.1029/2001JD002045

    Article  Google Scholar 

  64. Doran PT, Fritsen CH, McKay CP, Priscu JC, Adams EE (2003) Formation and character of an ancient 19-m ice cover and underlying trapped brine in an “ice-sealed” east Antarctic lake. Proc Natl Acad Sci 100:26–31. https://doi.org/10.1073/pnas.222680999

    CAS  Article  PubMed  Google Scholar 

  65. Doran PT, Lyons WB, McKnight DM (eds) (2010) Life in Antarctic deserts and other cold dry environments: astrobiological analogs. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511712258

  66. Doyle S (2014) Diversity and Activity of Bacteria in Basal Ice Environments. LSU Doctoral Dissertations. 713. https://digitalcommons.lsu.edu/gradschool_dissertations/713. Accessed 20 Jun 2021

  67. Dreesens LL, Lee CK, Cary SC (2014) The distribution and identity of edaphic fungi in the McMurdo Dry Valleys. Biology 3:466–483. https://doi.org/10.3390/biology3030466

    Article  PubMed  PubMed Central  Google Scholar 

  68. Edwards HG, Moody CD, Villar SEJ, Wynn-Williams DD (2005) Raman spectroscopic detection of key biomarkers of cyanobacteria and lichen symbiosis in extreme Antarctic habitats: evaluation for Mars Lander missions. Icarus 174:560–571. https://doi.org/10.1016/j.icarus.2004.07.029

    Article  Google Scholar 

  69. Edwards CS, Christensen PR, Hamilton VE (2008) Evidence for extensive olivine-rich basalt bedrock outcrops in Ganges and Eos chasmas, Mars. J Geophys Res Planets 113:E11003. https://doi.org/10.1029/2008JE003091

    Article  Google Scholar 

  70. Eicken H (1992) The role of sea ice in structuring Antarctic ecosystems. In: Hempel G (ed) Weddell sea ecology. Springer, Berlin, Heidelberg, pp 3–13. https://doi.org/10.1007/978-3-642-77595-6_1

  71. Elston DP, Bressler SL (1981) Magneto-stratigraphic studies in Neogene deposits of Taylor Valley and McMurdo Sound, Antarctica. J R Soc N Z 11:481–486. https://doi.org/10.1080/03036758.1981.10423337

    Article  Google Scholar 

  72. Fisher TM, Schulze-Makuch D (2013) Nutrient and population dynamics in a subglacial reservoir: a simulation case study of the Blood Falls ecosystem with implications for astrobiology. Int J Astrobiol 12:304–311. https://doi.org/10.1017/S147355041300013X

    CAS  Article  Google Scholar 

  73. Foley N, Tulaczyk S, Auken E, Schamper C, Dugan H, Mikucki J, Virginia R, Doran P (2016) Helicopter-borne transient electromagnetics in high-latitude environments: An application in the McMurdo Dry Valleys, Antarctica. Geophysics 81:87–99. https://doi.org/10.1190/geo2015-0186.1

    Article  Google Scholar 

  74. Foreman CM, Sattler B, Mikucki JA, Porazinska DL, Priscu JC (2007) Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. J Geophys Res Biogeosci 112:G04S32. https://doi.org/10.1029/2006JG000358

    CAS  Article  Google Scholar 

  75. Forte E, Dalle Fratte M, Azzaro M, Guglielmin M (2016) Pressurized brines in continental Antarctica as a possible analogue of Mars. Sci Rep 6:1–10. https://doi.org/10.1038/srep33158

    CAS  Article  Google Scholar 

  76. Foucher F, Hickman-Lewis K, Hutzler A, Joy KH, Folco L, Bridges JC, Westall F (2021) Definition and use of functional analogues in planetary exploration. Planet Space Sci 197:105162. https://doi.org/10.1016/j.pss.2021.105162

    Article  Google Scholar 

  77. Fountain AG, Lyons WB, Burkins MB, Dana GL, Doran PT, Lewis KJ, McKnight DM, Moorhead DL, Parsons AN, Priscu JC, Wall DH, Wharton RA Jr, Virginia RA (1999) Physical controls on the Taylor Valley ecosystem, Antarctica. Bioscience 49:961–971. https://doi.org/10.1525/bisi.1999.49.12.961

    Article  Google Scholar 

  78. Fountain AG, Tranter M, Nylen TH, Lewis KJ, Mueller DR (2004) Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctica. J Glaciol 50:35–45. https://doi.org/10.3189/172756504781830312

    Article  Google Scholar 

  79. Fountain AG, Nylen TH, Monaghan A, Basagic HJ, Bromwich D (2010) Snow in the McMurdo dry valleys, Antarctica. Int J Climatol 30:633–642. https://doi.org/10.1002/joc.1933

    Article  Google Scholar 

  80. Freckman DW, Virginia RA (1998) Soil biodiversity and community structure in the McMurdo Dry Valleys, Antarctica. In: Priscu JC (ed) Ecosystem dynamics in a polar desert: the McMurdo Dry Valleys, Antarctica. American Geophysical Union, pp 323–335. https://doi.org/10.1029/AR072p0323

  81. Freckman DW, Virginia RA (1991) Nematodes in the McMurdo dry valleys of southern Victoria Land. Antarct J US 26:233–234

    Google Scholar 

  82. Freckman DW, Virginia RA (1997) Low-diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78:363–369. https://doi.org/10.1890/0012-9658(1997)078[0363:LDASNC]2.0.CO;2

    Article  Google Scholar 

  83. French HM, Guglielmin M (2000) Frozen ground phenomena in the vicinity of Terra Nova Bay, northern Victoria Land, Antarctica: a preliminary report. Geogr Ann A 82:513–526. https://doi.org/10.1111/j.0435-3676.2000.00138.x

    Article  Google Scholar 

  84. Fricker HA, Scambos T, Bindschadler R, Padman L (2007) An active subglacial water system in West Antarctica mapped from space. Science 315:1544–1548. https://doi.org/10.1126/science.1136897

    CAS  Article  PubMed  Google Scholar 

  85. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053. https://doi.org/10.1126/science.215.4536.1045

    CAS  Article  PubMed  Google Scholar 

  86. Friedmann EI, Koriem AM (1989) Life on Mars: how it disappeared (if it was ever there). Adv Space Res 9:167–172. https://doi.org/10.1016/0273-1177(89)90224-X

    CAS  Article  PubMed  Google Scholar 

  87. Friedmann EI, Ocampo R (1976) Endolithic blue-green algae in the dry valleys: primary producers in the Antarctic desert ecosystem. Science 193:1247–1249. https://doi.org/10.1126/science.193.4259.124

    CAS  Article  PubMed  Google Scholar 

  88. Friedmann EI, Weed R (1987) Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert. Science 236:703–705. https://doi.org/10.1126/science.11536571

    CAS  Article  PubMed  Google Scholar 

  89. Friedmann EI, Hua M, Ocampo-Friedmann R (1988) 3.6 Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung 58:251–259

    CAS  PubMed  Google Scholar 

  90. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49. https://doi.org/10.1016/j.mycres.2006.12.001

    CAS  Article  PubMed  Google Scholar 

  91. Gibson EK, Wentworth SJ, McKay DS (1983) Chemical weathering and diagenesis of a cold desert soil from Wright Valley, Antarctica: an analog of Martian weathering processes. J Geophys Res Solid Earth 88:A912–A928. https://doi.org/10.1029/JB088iS02p0A912

    CAS  Article  Google Scholar 

  92. Giggenbach WF (1976) Geothermal ice caves on Mt Erebus, Ross Island, Antarctica. N Z J Geol Geophys 19:365–372. https://doi.org/10.1080/00288306.1976.10423566

    Article  Google Scholar 

  93. Golubic S, Friedmann EI, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Res 51:475–478. https://doi.org/10.1306/212F7CB6-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  94. Goordial J, Davila A, Lacelle D, Pollard W, Marinova MM, Greer CW, DiRuggiero J, McKay CP, Whyte LG (2016) Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME J 10:1613–1624. https://doi.org/10.1038/ismej.2015.239

    Article  PubMed  PubMed Central  Google Scholar 

  95. Grotzinger JP, Sumner DY, Kah LC, Stack K, Gupta S, Edgar L, Rubin D, Lewis K, Schieber J, Mangold N, Milliken R, Conrad PG, DesMarais D, Farmer J, Siebach K, Calef K III, Hurowitz J, McLennan SM, Ming D, Vaniman D, Crisp J, Vasavada A, Edgett KS, Malin M, Blake D, Gellert R, Mahaffy P, Wiens RC, Maurice S, Grant JA, Wilson S, Anderson RC, Beegle L, Arvidson R, Hallet B, Sletten RS, Rice M, Bell J III, Griffes J, Ehlmann B, Anderson RB, Bristow TF, Dietrich WE, Dromart G, Eigenbrode J, Fraeman A, Hardgrove C, Herkenhoff K, Jandura L, Kocurek G, Lee S, Leshin LA, Leveille R, Limonadi D, Maki J, McCloskey S, Meyer M, Minitti M, Newsom H, Oehler D, Okon A, Palucis M, Parker T, Rowland S, Schmidt M, Squyres S, Steele A, Stolper E, Summons R, Treiman A, Williams R, Yingst A (2014) A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater. Mars Sci 343:1242777. https://doi.org/10.1126/science.1242777

    CAS  Article  Google Scholar 

  96. Gunn J (ed) (2004) Encyclopedia of caves and karst science. Taylor & Francis, New York

    Google Scholar 

  97. Head JW, Marchant DR, Dickson JL, Levy JS, Morgan GA (2007) Slope streaks in the Antarctic Dry Valleys: characteristics, candidate formation mechanisms, and implications for slope streak formation in the Martian environment. In: Cooper AK, Raymond CR et al (eds) Antarctica: a keystone in a Changing World—Online Proceedings of the 10th International Symposium on Antarctic Earth Sciences. U.S. Geological Survey and The National Academies

  98. Heldmann JL, Pollard W, McKay CP, Marinova MM, Davila A, Williams KE, Lacelle D, Andersen DT (2013) The high elevation Dry Valleys in Antarctica as analog sites for subsurface ice on Mars. Planet Space Sci 85:53–58. https://doi.org/10.1016/j.pss.2013.05.019

    CAS  Article  Google Scholar 

  99. Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial ecosystems. Ecol Monogr 78:41–67. https://doi.org/10.1890/07-0187.1

    Article  Google Scholar 

  100. Hong IS, Yi Y, Kim E (2014) Lunar pit craters presumed to be the entrances of lava caves by analogy to the Earth lava tube pits. J Astron Space Sci 31:131–140. https://doi.org/10.5140/JASS.2014.31.2.131

    Article  Google Scholar 

  101. Horneck G (2000) The microbial world and the case for Mars. Planet Space Sci 48:1053–1063. https://doi.org/10.1016/S0032-0633(00)00079-9

    CAS  Article  Google Scholar 

  102. Horneck G, Walter N, Westall F, Grenfell JL, Martin WF, Gomez F, Leuko S, Lee N, Onofri S, Tsiganis K, Saladino R, Pilat-Lohinger E, Palomba E, Harrison J, Rull F, Muller C, Strazzulla G, Brucato JR, Rettberg P, Capria MT (2016) AstRoMap European astrobiology roadmap. Astrobiology 16:201–243. https://doi.org/10.1089/ast.2015.1441

    Article  PubMed  PubMed Central  Google Scholar 

  103. Horowitz NH, Bauman AJ, Cameron RE, Geiger PJ, Hubbard JS, Shulman GP, Simmonds PG, Westberg K (1969) Sterile soil from Antarctica: organic analysis. Science 164:1054–1056. https://doi.org/10.1126/science.164.3883.1054

    CAS  Article  PubMed  Google Scholar 

  104. Horowitz NH, Cameron RE, Hubbard JS (1972) Microbiology of the dry valleys of Antarctica. Science 176:242–245

    CAS  Article  Google Scholar 

  105. Husain A, Jones H, Kannan B, Wong U, Pimentel T, Tang S, Daftry S, Huber S, Whittaker WL (2013) Mapping planetary caves with an autonomous, heterogeneous robot team. In: Proceedings of IEEE Aerospace Conference 2013. IEEE. https://doi.org/10.1109/AERO.2013.6497363

  106. Kappen L (1993) Lichens in the Antarctic region. Antarct Microbiol 12:433–490. https://doi.org/10.1017/S0954102000000377

    Article  Google Scholar 

  107. Karl D, Bird DF, Björkman K, Houlihan T, Shackelford R, Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:2144–2147. https://doi.org/10.1126/science.286.5447.2144

    CAS  Article  PubMed  Google Scholar 

  108. Knittel K, Kuever J, Meyerdierks A, Meinke R, Amann R, Brinkhoff T (2005) Thiomicrospira arctica sp. nov. and Thiomicrospira psychrophila sp. nov., psychrophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacteria isolated from marine Arctic sediments. Int J Syst Evol Microbiol 55:781–786. https://doi.org/10.1099/ijs.0.63362-0

    CAS  Article  PubMed  Google Scholar 

  109. Langford H, Hodson A, Banwart S, Bøggild C (2010) The microstructure and biogeochemistry of Arctic cryoconite granules. Ann Glaciol 51:87–94. https://doi.org/10.3189/172756411795932083

    CAS  Article  Google Scholar 

  110. Lapalme CM, Lacelle D, Pollard W, Fortier D, Davila A, McKay CP (2017) Cryostratigraphy and the sublimation unconformity in permafrost from an ultraxerous environment, University Valley, McMurdo Dry Valleys of Antarctica. Permafr Periglac Process 28:649–662. https://doi.org/10.1002/ppp.1948

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lauro SE, Pettinelli E, Caprarelli G, Guallini L, Rossi AP, Mattei E, Cosciotti B, Cicchetti A, Soldovieri F, Cartacci M, Di Paolo F, Noschese R, Orosei R (2021) Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data. Nat Astron 5:63–70. https://doi.org/10.1038/s41550-020-1200-6

    Article  Google Scholar 

  112. Laybourn-Parry J, Pearce DA (2007) The biodiversity and ecology of Antarctic lakes: models for evolution. Philos Trans R Soc Lond B Biol Sci 362:2273–2289. https://doi.org/10.1098/rstb.2006.1945

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. Lee CK, Barbier BA, Bottos EM, McDonald IR, Cary SC (2012) The inter-valley soil comparative survey: the ecology of Dry Valley edaphic microbial communities. ISME J 6:1046–1057. https://doi.org/10.1038/ismej.2011.170

    CAS  Article  PubMed  Google Scholar 

  114. Lee CK, Laughlin DC, Bottos EM, Caruso T, Joy K, Barrett JE, Brabyn L, Nielsen UN, Adams BJ, Wall DH, Hopkins DW, Pointing SB, McDonald IR, Cowan DA, Banks JC, Stichbury GA, Jones I, Zawar-Reza P, Katurji M, Hogg ID, Sparrow AD, Storey BC, Allan Green TC, Cary SC (2019) Biotic interactions are an unexpected yet critical control on the complexity of an abiotically driven polar ecosystem. Commun Biol 2:1–10. https://doi.org/10.1038/s42003-018-0274-5

    CAS  Article  Google Scholar 

  115. Leitchenkov GL, Antonov AV, Luneov PI, Lipenkov VY (2016) Geology and environments of subglacial Lake Vostok. Philos Trans R Soc A Math Phys Eng Sci 374:20140302. https://doi.org/10.1098/rsta.2014.0302

    CAS  Article  Google Scholar 

  116. Léveillé R (2009) Validation of astrobiology technologies and instrument operations in terrestrial analogue environments. CR Palevol 8:637–648. https://doi.org/10.1016/j.crpv.2009.03.005

    Article  Google Scholar 

  117. Léveillé RJ, Datta S (2010) Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: a review. Planet Space Sci 58:592–598. https://doi.org/10.1016/j.pss.2009.06.004

    CAS  Article  Google Scholar 

  118. Levy J (2012) Hydrological characteristics of recurrent slope lineae on Mars: Evidence for liquid flow through regolith and comparisons with Antarctic terrestrial analogs. Icarus 219:1–4. https://doi.org/10.1016/j.icarus.2012.02.016

    Article  Google Scholar 

  119. Levy J (2013) How big are the McMurdo Dry Valleys? Estimating ice-free area using Landsat image data. Antarct Sci 25:119–120. https://doi.org/10.1017/S0954102012000727

    Article  Google Scholar 

  120. Levy J, Fountain A, Lyons WB, Welch K (2015) Experimental formation of pore fluids in McMurdo Dry Valleys soils. Antarct Sci 27:163–171. https://doi.org/10.1017/S0954102014000479

    Article  Google Scholar 

  121. Levy JS, Fountain AG, Gooseff MN, Welch KA, Lyons WB (2011) Water tracks and permafrost in Taylor Valley Antarctica: extensive and shallow groundwater connectivity in a cold desert ecosystem. Bulletin 123:2295–2311. https://doi.org/10.1130/B30436.1

  122. Lo Giudice A, Conte A, Papale M, Rizzo C, Azzaro M, Guglielmin M (2021) Prokaryotic diversity and metabolically active communities in brines from two perennially ice-covered Antarctic lakes. Astrobiology 21:551–565. https://doi.org/10.1089/ast.2020.2238

    CAS  Article  PubMed  Google Scholar 

  123. Lorenz RD, Gleeson D, Prieto-Ballesteros O, Gomez F, Hand K, Bulat S (2011) Analog environments for a Europa lander mission. Adv Space Res 48:689–696. https://doi.org/10.1016/j.asr.2010.05.006

    Article  Google Scholar 

  124. Lutz S, Ziolkowski LA, Benning LG (2019) The biodiversity and geochemistry of cryoconite holes in queen maud land, East Antarctica. Microorganisms 7:160. https://doi.org/10.3390/microorganisms7060160

    CAS  Article  PubMed Central  Google Scholar 

  125. Magalhães CM, Machado A, Frank-Fahle B, Lee CK, Cary SC (2014) The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic Dry Valleys. Front Microbiol 5:515. https://doi.org/10.3389/fmicb.2014.00515

    Article  PubMed  PubMed Central  Google Scholar 

  126. Malakhov AV, Mitrofanov IG, Litvak ML, Sanin AB, Golovin DV, Djachkova MV, Nikiforov Y, Anikin AA, Lisov DI, Lukyanov NV, Mokrousov MI (2020) Ice Permafrost “Oases” Close to Martian Equator: planet neutron mapping based on data of FREND instrument onboard TGO Orbiter of Russian-European ExoMars Mission. Astron Lett 46:407–421. https://doi.org/10.1134/S1063773720060079

    CAS  Article  Google Scholar 

  127. Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361. https://doi.org/10.1016/j.resmic.2010.12.004

    Article  PubMed  Google Scholar 

  128. Margesin R, Schumann P, Spröer C, Gounot AM (2004) Arthrobacter psychrophenolicus sp. nov., isolated from an alpine ice cave. Int J Syst Evol Microbiol 54:2067–2072. https://doi.org/10.1099/ijs.0.63124-0

    CAS  Article  PubMed  Google Scholar 

  129. Marinova MM, Mckay CP, Pollard WH, Heldmann JL, Davila AF, Andersen DT, Jackson WA, Lacelle D, Paulsen G, Zacny K (2013) Distribution of depth to ice-cemented soils in the high-elevation Quartermain Mountains, McMurdo Dry Valleys, Antarctica. Antarct Sci 25:575–582. https://doi.org/10.1017/S095410201200123X

    Article  Google Scholar 

  130. Marlow J, Peckmann J, Orphan V (2015) Autoendoliths: a distinct type of rock-hosted microbial life. Geobiology 13:303–307. https://doi.org/10.1111/gbi.12131

    CAS  Article  PubMed  Google Scholar 

  131. McEwen AS, Dundas CM, Mattson SS, Toigo AD, Ojha L, Wray JJ, Chojnacki M, Byrne S, Murchie SL, Thomas N (2014) Recurring slope lineae in equatorial regions of Mars. Nat Geosci 7:53–58. https://doi.org/10.1038/ngeo2014

    CAS  Article  Google Scholar 

  132. McIntyre NF (1984) Cryoconite hole thermodynamics. Can J Earth Sci 21:152–156. https://doi.org/10.1139/e84-016

    Article  Google Scholar 

  133. McKay CP (1993) Relevance of Antarctic microbial ecosystems to exobiology. In: Friedmann EI, Thistle AB (eds) Antarctic microbiology. Wiley-Liss, New York, pp 593–601

    Google Scholar 

  134. Mellon MT, Arvidson RE, Sizemore HG, Searls ML, Blaney DL, Cull S, Hecht MH, Heet TL, Keller HU, Lemmon MT, Markiewicz WJ, Ming DW, Morris RV, Pike WT, Zent AP (2009) Ground ice at the Phoenix landing site: stability state and origin. J Geophys Res Planets 114:E00E07. https://doi.org/10.1029/2009JE003417

    CAS  Article  Google Scholar 

  135. Mergelov N, Mueller CW, Prater I, Shorkunov I, Dolgikh A, Zazovskaya E, Shishkov V, Krupskaya V, Abrosimov K, Cherkinsky A, Goryachkin S (2018) Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on Earth. Sci Rep 8:1–15. https://doi.org/10.1038/s41598-018-21682-6

    CAS  Article  Google Scholar 

  136. Mikucki JA, Priscu JC (2007) Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Appl Environ Microbiol 73:4029–4039. https://doi.org/10.1128/AEM.01396-06

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  137. Mikucki JA, Auken E, Tulaczyk S, Virginia RA, Schamper C, Sørensen KI, Doran PT, Dugan H, Foley N (2015) Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley. Nat Commun 6:1–9. https://doi.org/10.1038/ncomms7831

    CAS  Article  Google Scholar 

  138. Mischna MA, Richardson MI, Wilson RJ, McCleese DJ (2003) On the orbital forcing of Martian water and CO2 cycles: a general circulation model study with simplified volatile schemes. J Geophys Res Planets 108:5062. https://doi.org/10.1029/2003JE002051

    CAS  Article  Google Scholar 

  139. Mitri G, Meriggiola R, Hayes A, Lefevre A, Tobie G, Genova A, Lunine JI, Zebker H (2014) Shape, topography, gravity anomalies and tidal deformation of Titan. Icarus 236:169–177. https://doi.org/10.1016/j.icarus.2014.03.018

    Article  Google Scholar 

  140. Mitrofanov IG, Zuber MT, Litvak ML, Demidov NE, Sanin AB, Boynton WV, Gilichinsky DA, Hamara D, Kozyrev AS, Saunders RD, Smith DE, Tretyakov VI (2007) Water ice permafrost on Mars: layering structure and subsurface distribution according to HEND/Odyssey and MOLA/MGS data. Geophys Res Lett. https://doi.org/10.1029/2007GL030030

    Article  Google Scholar 

  141. Moorhead DL, Barrett JE, Virginia RA, Wall DH, Porazinska D (2003) Organic matter and soil biota of upland wetlands in Taylor Valley, Antarctica. Polar Biol 26:567–576. https://doi.org/10.1007/s00300-003-0524-x

    Article  Google Scholar 

  142. Murray AE, Kenig F, Fritsen CH, McKay CP, Cawley KM, Edwards R, Kuhn E, McKnight DM, Ostrom NE, Peng V, Ponce A, Priscu JC, Samarkin V, Townsend AT, Wagh P, Young SA, Yung PT, Doran PT (2012) Microbial life at -13 C in the brine of an ice-sealed Antarctic lake. Proc Natl Acad Sci 109:20626–20631. https://doi.org/10.1073/pnas.1208607109

    Article  PubMed  PubMed Central  Google Scholar 

  143. Musilova M, Wright G, Ward JM, Dartnell LR (2015) Isolation of radiation-resistant bacteria from Mars analog Antarctic Dry Valleys by preselection, and the correlation between radiation and desiccation resistance. Astrobiology 15:1076–1090. https://doi.org/10.1089/ast.2014.1278

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  144. Nagatsuka N, Takeuchi N, Uetake J, Shimada R (2014) Mineralogical composition of cryoconite on glaciers in northwest Greenland. Bull Glaciol Res 32:107–114. https://doi.org/10.5331/bgr.32.107

    Article  Google Scholar 

  145. Nimmo F, Hamilton DP, McKinnon WB, Schenk PM, Binzel RP, Bierson CJ, Beyer RA, Moore JM, Stern SA, Weaver HA, Olkin CB, Young LA, Smith KE, New Horizons Geology, Geophysics & Imaging Theme Team (2016) Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto. Nature 540:94–96. https://doi.org/10.1038/nature20148

  146. Obryk MK, Doran PT, Friedlaender AS, Gooseff MN, Li W, Morgan-Kiss RM, Ducklow HW (2016) Responses of Antarctic marine and freshwater ecosystems to changing ice conditions. Bioscience 66:864–879. https://doi.org/10.1093/biosci/biw109

    Article  Google Scholar 

  147. Omelon CR (2016) Endolithic microorganisms and their habitats. In: Hurst C (ed) Their world: a diversity of microbial environments. Advances in environmental microbiology. Springer, Cham, pp 171–201. https://doi.org/10.1007/978-3-319-28071-4_4

  148. Onofri S, Pagano S, Zucconi L, Tosi S (1999) Friedmanniomyces endolithicus (Fungi, Hyphomycetes), anam-gen and sp nov, from continental Antarctica. Nova Hedwigia 68:175–182

    Article  Google Scholar 

  149. Onofri S, de la Torre R, de Vera J-P, Ott S, Zucconi L, Selbmann L, Horneck G (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12:508–516. https://doi.org/10.1089/ast.2011.0736

    Article  PubMed  Google Scholar 

  150. Onofri S, de Vera JP, Zucconi L, Selbmann L, Scalzi G, Venkateswaran KJ, Horneck G (2015) Survival of Antarctic cryptoendolithic fungi in simulated Martian conditions on board the International Space Station. Astrobiology 15:1052–1059. https://doi.org/10.1089/ast.2015.1324

    CAS  Article  PubMed  Google Scholar 

  151. Onofri S, Selbmann L, Pacelli C, Zucconi L, Rabbow E, de Vera JP (2019) Survival, DNA, and ultrastructural integrity of a cryptoendolithic Antarctic fungus in Mars and Lunar rock analogs exposed outside the International Space Station. Astrobiology 19:170–182. https://doi.org/10.1089/ast.2017.1728

    CAS  Article  PubMed  Google Scholar 

  152. Onofri S, Zucconi L, Selbmann L, de Hoog S, de los Ríos A, Ruisi S, Grube M (2007) Fungal associations at the cold edge of life. In: Seckbach J (ed) Algae and Cyanobacteria in extreme environments. Cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, pp 735–757. https://doi.org/10.1007/978-1-4020-6112-7_40

  153. Orosei R, Lauro SE, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B, Seu R (2018) Radar evidence of subglacial liquid water on Mars. Science 361:490–493. https://doi.org/10.1126/science.aar7268

    CAS  Article  PubMed  Google Scholar 

  154. Øvstedal DO, Smith RL (2001) Lichens of Antarctica and South Georgia: a guide to their identification and ecology. Cambridge University Press, Cambridge

    Google Scholar 

  155. Papale M, Lo Giudice A, Conte A, Rizzo C, Rappazzo AC, Maimone G, Guglielmin M (2019) Microbial assemblages in pressurized Antarctic brine pockets (Tarn Flat, Northern Victoria Land): A hotspot of biodiversity and activity. Microorganisms 7:333. https://doi.org/10.3390/microorganisms7090333

    CAS  Article  PubMed Central  Google Scholar 

  156. Parkinson CL, Cavalieri DJ (2012) Antarctic sea ice variability and trends, 1979–2010. Cryosphere 6:871–880. https://doi.org/10.5194/tc-6-871-2012

    Article  Google Scholar 

  157. Pavlov AK, Blinov AV, Konstantinov AN (2002) Sterilization of Martian surface by cosmic radiation. Planet Space Sci 50:669–673. https://doi.org/10.1016/S0032-0633(01)00113-1

    CAS  Article  Google Scholar 

  158. Phoenix VR, Adams DG, Konhauser KO (2000) Cyanobacterial viability during hydrothermal biomineralisation. Chem Geol 169:329–338. https://doi.org/10.1016/S0009-2541(00)00212-6

    CAS  Article  Google Scholar 

  159. Poglazova MN, Mitskevich IN, Abyzov SS, Ivanov MV (2001) Microbiological characterization of the accreted ice of subglacial Lake Vostok, Antarctica. Microbiology 70:723–730. https://doi.org/10.1023/A:1013148101626

    CAS  Article  Google Scholar 

  160. Pointing SB, Chan Y, Lacap DC, Lau MC, Jurgens JA, Farrell RL (2009) Highly specialized microbial diversity in hyper-arid polar desert. PNAS 106:19964–19969. https://doi.org/10.1073/pnas.0908274106

    Article  PubMed  PubMed Central  Google Scholar 

  161. Poniecka EA, Bagshaw EA, Sass H, Segar A, Webster G, Williamson C, Tranter M (2020) Physiological capabilities of cryoconite hole microorganisms. Front Microbiol 11:1783. https://doi.org/10.3389/fmicb.2020.01783

    Article  PubMed  PubMed Central  Google Scholar 

  162. Popa R, Smith AR, Popa R, Boone J, Fisk M (2012) Olivine-respiring bacteria isolated from the rock-ice interface in a lava-tube cave, a Mars analog environment. Astrobiology 12:9–18. https://doi.org/10.1089/ast.2011.0639

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  163. Porazinska DL, Fountain AG, Nylen TH, Tranter M, Virginia RA, Wall DH (2004) The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arct Antarct Alp Res 36:84–89. https://doi.org/10.1657/1523-0430(2004)036

    Article  Google Scholar 

  164. Postberg F, Schmidt J, Hillier J, Kempf S, Srama R (2011) A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474:620–622. https://doi.org/10.1038/nature10175

    CAS  Article  PubMed  Google Scholar 

  165. Preston LJ, Dartnell LR (2014) Planetary habitability: lessons learned from terrestrial analogues. Int J Astrobiol 13:81–98. https://doi.org/10.1017/S1473550413000396

    Article  Google Scholar 

  166. Price PB, Nagornov OV, Bay R, Chirkin D, He Y, Miocinovic P, Zagorodnov V (2002) Temperature profile for glacial ice at the South Pole: implications for life in a nearby subglacial lake. PNAS 99:7844–7847. https://doi.org/10.1073/pnas.082238999

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  167. Priscu JC (1995) Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica. Freshw Biol 34:215–227. https://doi.org/10.1111/j.1365-2427.1995.tb00882.x

    Article  Google Scholar 

  168. Priscu JC, Adams EE, Lyons WB, Voytek MA, Mogk DW, Brown RL, Avci R (1999) Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141–2144. https://doi.org/10.1126/science.286.5447.2141

    CAS  Article  PubMed  Google Scholar 

  169. Rampelotto PH (2013) Extremophiles and extreme environments. Life 3:482–485. https://doi.org/10.3390/life3030482

    Article  PubMed  PubMed Central  Google Scholar 

  170. Reid IN, Sparks WB, Lubow S, McGrath M, Livio M, Valenti J, DasSarma S (2006) Terrestrial models for extraterrestrial life: methanogens and halophiles at Martian temperatures. Int J Astrobiol 5:89. https://doi.org/10.1017/S1473550406002916

    Article  Google Scholar 

  171. Richter I, Herbold CW, Lee CK, McDonald IR, Barrett JE, Cary SC (2014) Influence of soil properties on archaeal diversity and distribution in the McMurdo Dry Valleys, Antarctica. FEMS Microbiol Ecol 89:347–359. https://doi.org/10.1111/1574-6941.12322

    CAS  Article  PubMed  Google Scholar 

  172. Samui G, Antony R, Thamban M (2018) Chemical characteristics of hydrologically distinct cryoconite holes in coastal Antarctica. Ann Glaciol 59:69–76. https://doi.org/10.1017/aog.2018.30

    Article  Google Scholar 

  173. Sannino C, Borruso L, Mezzasoma A, Battistel D, Zucconi L, Selbmann L, Guglielmin M (2020) Intra-and inter-cores fungal diversity suggests interconnection of different habitats in an Antarctic frozen lake (Boulder Clay, Northern Victoria Land). Environ Microbiol 22:3463–3477. https://doi.org/10.1111/1462-2920.15117

    CAS  Article  PubMed  Google Scholar 

  174. Sattler B, Wille A, Waldhuber S, Sipiera P, Psenner R (2002) Various ice ecosystems in alpine and polar regions-an overview. Proc Second Eur Workshop Exo/astrobiol 518:223–226

    Google Scholar 

  175. Sauro F, De Waele J, Payler SJ, Vattano M, Sauro FM, Turchi L, Bessone L (2021) Speleology as an analogue to space exploration: the ESA CAVES training programme. Acta Astronaut 184:150–166. https://doi.org/10.1016/j.actaastro.2021.04.003

    Article  Google Scholar 

  176. Schwarz AM, Green JD, Green TGA, Seppelt RD (1993) Invertebrates associated with moss communities at Canada Glacier, southern Victoria Land, Antarctica. Polar Biol 13:157–162. https://doi.org/10.1007/BF00238925

    Article  Google Scholar 

  177. Selbmann L, De Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32

    Google Scholar 

  178. Siegert MJ, Tranter M, Ellis-Evans JC, Priscu JC, Berry Lyons W (2003) The hydrochemistry of Lake Vostok and the potential for life in Antarctic subglacial lakes. Hydrol Process 17:795–814. https://doi.org/10.1002/hyp.1166

    Article  Google Scholar 

  179. Siegert MJ, Ross N, Le Brocq AM (2016) Recent advances in understanding Antarctic subglacial lakes and hydrology. Philos Trans R Soc Math Phys Eng Sci 374:20140306. https://doi.org/10.1098/rsta.2014.0306

    CAS  Article  Google Scholar 

  180. Smith RC, Prezelin BB, Baker KEA, Bidigare RR, Boucher NP, Coley T, Menzies D (1992) Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959. https://doi.org/10.1126/science.1546292

    CAS  Article  PubMed  Google Scholar 

  181. Sohlenius B, Boström S, Jönsson KI (2004) Occurrence of nematodes, tardigrades and rotifers on ice-free areas in East Antarctica. Pedobiologia 48:395–408. https://doi.org/10.1016/j.pedobi.2004.06.001

    Article  Google Scholar 

  182. Sommers P, Darcy JL, Porazinska DL, Gendron E, Fountain AG, Zamora F, Schmidt SK (2019) Comparison of microbial communities in the sediments and water columns of frozen cryoconite holes in the McMurdo Dry Valleys, Antarctica. Front Microbiol 10:65. https://doi.org/10.3389/fmicb.2019.00065

    Article  PubMed  PubMed Central  Google Scholar 

  183. Spigel RH, Priscu JC (1998) Physical limnology of the McMurdo Dry Valleys lakes. In: Priscu JC (ed) Ecosystem dynamics in a polar desert: the McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington, D.C., pp 153–187. https://doi.org/10.1029/AR072p0153

  184. Stevens MI, Hogg ID (2002) Expanded distributional records of Collembola and Acari in southern Victoria Land, Antarctica. Pedobiologia 46:485–495. https://doi.org/10.1078/0031-4056-00154

    Article  Google Scholar 

  185. Stingl U, Cho JC, Foo W, Vergin KL, Lanoil B, Giovannoni SJ (2008) Dilution-to-extinction culturing of psychrotolerant planktonic bacteria from permanently ice-covered lakes in the McMurdo Dry Valleys, Antarctica. Microb Ecol 55:395–405. https://doi.org/10.1007/s00248-007-9284-4

    CAS  Article  PubMed  Google Scholar 

  186. Strandtmann RW (1967) Terrestrial Prostigmata (trombidiform mites). Antarct Res Ser 10:51–80

    Google Scholar 

  187. Stroeven AP, Burckle LH, Kleman J, Prentice ML (1998) Atmospheric transport of diatoms in the Antarctic Sirius Group: Pliocene deep freeze. GSA Today 8:1–5

    Google Scholar 

  188. Sun HJ, Friedmann EI (1999) Growth on geological time scales in the Antarctic cryptoendolithic microbial community. Geomicrobiol J 16:193–202. https://doi.org/10.1080/014904599270686

    Article  Google Scholar 

  189. Tamppari LK, Anderson RM, Archer PD Jr, Douglas S, Kounaves SP, McKay CP, Zent AP (2012) Effects of extreme cold and aridity on soils and habitability: McMurdo Dry Valleys as an analogue for the Mars Phoenix landing site. Antarct Sci 24:211–228. https://doi.org/10.1017/S0954102011000800

    Article  Google Scholar 

  190. Tebo BM, Davis RE, Anitori RP, Connell LB, Schiffman P, Staudigel H (2015) Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica. Front Microbiol 6:179–214. https://doi.org/10.3389/fmicb.2015.00179

    Article  PubMed  PubMed Central  Google Scholar 

  191. Thomas DN, Dieckmann GS (2002) Antarctic sea ice—a habitat for extremophiles. Science 295:641–644. https://doi.org/10.1126/science.1063391

    CAS  Article  PubMed  Google Scholar 

  192. Tranter M, Fountain AG, Fritsen CH, Berry Lyons W, Priscu JC, Statham PJ, Welch KA (2004) Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrol Process 18:379–387. https://doi.org/10.1002/hyp.5217

    Article  Google Scholar 

  193. Treonis AM, Wall DH, Virginia RA (1999) Invertebrate biodiversity in Antarctic Dry Valley soils and sediments. Ecosystems 2:482–492. https://doi.org/10.1007/s100219900096

    Article  Google Scholar 

  194. Treonis AM, Wall DH, Virginia RA (2000) The use of anhydrobiosis by soil nematodes in the Antarctic Dry Valleys. Funct Ecol 14:460–467

    Article  Google Scholar 

  195. Tulaczyk S, Mikucki JA, Siegfried MR, Priscu JC, Barcheck CG, Beem LH, Schwartz SY (2014) WISSARD at Subglacial Lake Whillans, West Antarctica: scientific operations and initial observations. Ann Glaciol 55:51–58. https://doi.org/10.3189/2014AoG65A009

    Article  Google Scholar 

  196. van Everdingen RO, International Permafrost Association (1998) Multi-language glossary of permafrost and related ground-ice terms in Chinese, English, French, German, Icelandic, Italian, Norwegian, Polish, Romanian, Russian, Spanish, and Swedish. International Permafrost Association, Terminology Working Group

  197. Van Hoolst T, Baland RM, Trinh A (2016) The diurnal libration and interior structure of Enceladus. Icarus 277:311–318. https://doi.org/10.1016/j.icarus.2016.05.025

    Article  Google Scholar 

  198. Vimeux F, Masson V, Delaygue G, Jouzel J, Petit JR, Stievenard M (2001) A 420,000 year deuterium excess record from East Antarctica: information on past changes in the origin of precipitation at Vostok. J Geophys Res Atmos 106:31863–31873. https://doi.org/10.1029/2001JD900076

    CAS  Article  Google Scholar 

  199. Vishniac HS, Friedmann EI (1993) Soil microgeology. In: Friedmann EI (ed) Antarctic Microbiology, pp 297–341

  200. Walker JJ, Spear JR, Pace NR (2005) Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434:1011–1014. https://doi.org/10.1038/nature03447

    CAS  Article  PubMed  Google Scholar 

  201. Warren LA, Ferris FG (1998) Continuum between sorption and precipitation of Fe (III) on microbial surfaces. Environ Sci Technol 32:2331–2337. https://doi.org/10.1021/es9800481

    CAS  Article  Google Scholar 

  202. Wei ST, Lacap-Bugler DC, Lau MC, Caruso T, Rao S, de Los RA, Pointing SB (2016) Taxonomic and functional diversity of soil and hypolithic microbial communities in Miers Valley, McMurdo Dry Valleys, Antarctica. Front Microbiol 7:1642. https://doi.org/10.3389/fmicb.2016.01642

    Article  PubMed  PubMed Central  Google Scholar 

  203. Weiss DK, Head JW (2017) Evidence for stabilization of the ice-cemented cryosphere in earlier Martian history: implications for the current abundance of groundwater at depth on Mars. Icarus 288:120–147. https://doi.org/10.1016/j.icarus.2017.01.018

    CAS  Article  Google Scholar 

  204. Wentworth SJ, Gibson EK, Velbel MA, McKay DS (2005) Antarctic Dry Valleys and indigenous weathering in Mars meteorites: implications for water and life on Mars. Icarus 174:383–395. https://doi.org/10.1016/j.icarus.2004.08.026

    CAS  Article  Google Scholar 

  205. Westall F, de Wit MJ, Dann J, van der Gaast S, de Ronde CE, Gerneke D (2001) Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa. Precambrian Res 106:93–116. https://doi.org/10.1016/S0301-9268(00)00127-3

    CAS  Article  Google Scholar 

  206. Westall F, Foucher F, Bost N, Bertrand M, Loizeau D, Vago JL, Cockell CS (2015) Biosignatures on Mars: what, where, and how? Implications for the search for martian life. Astrobiology 15:998–1029. https://doi.org/10.1089/ast.2015.1374

    Article  PubMed  PubMed Central  Google Scholar 

  207. Wharton DA, Brown IM (1989) A survey of terrestrial nematodes from the McMurdo Sound region, Antarctica. NZ J Zool 16:467–470. https://doi.org/10.1080/03014223.1989.10422914

    Article  Google Scholar 

  208. Whittaker W (2012) Technologies enabling exploration of skylights, lava tubes and caves. NASA, US, Report, no. NNX11AR42G

  209. Wierzchos J, Ascaso C (2001) Life, decay and fossilisation of endolithic microorganisms from the Ross Desert, Antarctica. Polar Biol 24:863–868. https://doi.org/10.1007/s003000100296

    Article  Google Scholar 

  210. Wierzchos J, Ascaso C (2002) Microbial fossil record of rocks from the Ross Desert, Antarctica: implications in the search for past life on Mars. Int J Astrobiol 1:51–59. https://doi.org/10.1017/S1473550402001052

    Article  Google Scholar 

  211. Wierzchos J, Sancho LG, Ascaso C (2005) Biomineralization of endolithic microbes in rocks from the McMurdo Dry Valleys of Antarctica: implications for microbial fossil formation and their detection. Environ Microbiol 7:566–575. https://doi.org/10.1111/j.1462-2920.2005.00725.x

    CAS  Article  PubMed  Google Scholar 

  212. Wierzchos J, Ríos ADL, Ascaso C (2012) Microorganisms in desert rocks: the edge of life on Earth. Int Microbiol 15:171–181. https://doi.org/10.2436/20.1501.01.17

    CAS  Article  Google Scholar 

  213. Wright A, Siegert M (2012) A fourth inventory of Antarctic subglacial lakes. Antarct Sci 24:659–664. https://doi.org/10.1017/S095410201200048X

    Article  Google Scholar 

  214. Wynn-Williams DD, Edwards HGM (2000) Antarctic ecosystems as models for extraterrestrial surface habitats. Planet Space Sci 48:1065–1075. https://doi.org/10.1016/S0032-0633(00)00080-5

    CAS  Article  Google Scholar 

  215. Wynn-Williams DD (1990) Ecological aspects of Antarctic Microbiology. In: Marshall KC (ed) Advances in microbial ecology. Springer, Boston, pp 71–146. https://doi.org/10.1007/978-1-4684-7612-5_3

  216. Zamora FJ (2018) Measuring and modeling evolution of cryoconite holes in the McMurdo Dry Valleys, Antarctica. Master dissertation, Portland State University

  217. Zawierucha K, Ostrowska M, Kolicka M (2017) Applicability of cryoconite consortia of microorganisms and glacier-dwelling animals in astrobiological studies. Contemp Trends Geosci 6:1–10. https://doi.org/10.1515/ctg-2017-0001

    Article  Google Scholar 

  218. Zawierucha K, Porazinska DL, Ficetola GF, Ambrosini R, Baccolo G, Buda J, Takeuchi N (2021) A hole in the nematosphere: tardigrades and rotifers dominate the cryoconite hole environment, whereas nematodes are missing. J Zool 313:18–36. https://doi.org/10.1111/jzo.12832

    Article  Google Scholar 

  219. Zelenyi L, Korablev O, Vorobyova E, Martynov M, Akim EL, Zakahrov A (2010) Europa lander mission: a challenge to find traces of alien life. Proc Int Astron Union 6:115–129. https://doi.org/10.1017/S1743921310007337

    Article  Google Scholar 

  220. Zucconi L, Selbmann L, Buzzini P, Turchetti B, Guglielmin M, Frisvad JC, Onofri S (2012) Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biol 35:749–757. https://doi.org/10.1007/s00300-011-1119-6

    Article  Google Scholar 

  221. Zucconi L, Onofri S, Cecchini C, Isola D, Ripa C, Fenice M, Selbmann L (2016) Mapping the lithic colonization at the boundaries of life in Northern Victoria Land, Antarctica. Polar Biol 39:91–102. https://doi.org/10.1007/s00300-014-1624-5

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Claudia Pacelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by M. Moracci.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cassaro, A., Pacelli, C., Aureli, L. et al. Antarctica as a reservoir of planetary analogue environments. Extremophiles 25, 437–458 (2021). https://doi.org/10.1007/s00792-021-01245-w

Download citation

Keywords

  • Antarctica
  • Terrestrial analogues
  • Extremophiles
  • Microbial communities
  • Limits of life
  • Solar System