Prokaryotic diversity and biogeochemical characteristics of field living and laboratory cultured stromatolites from the hypersaline Laguna Interna, Salar de Atacama (Chile)

Abstract

Stromatolites are organo-sedimentary structures found principally in seas and saline lakes that contain sheets of sediments and minerals formed by layers of microbial communities, which trap sediments and induce the precipitation of minerals.

A living stromatolite from the alkaline Laguna Interna in the Salar de Atacama was collected and one of the fragments was deposited in an experimental aquarium for 18 months. We used Illumina sequencing of PCR-amplified V4 regions of 16S rRNA genes from total extracted DNA to identify the microbial populations. The chemical structure was studied using X-Ray Diffraction (XRD) and bench chemical methods. We found that members belonging to the Proteobacteria, Planctomycetes, Chloroflexi and Bacteroidetes phyla dominated the bacterial communities of the living and aquarium cultured samples. The potential metabolic functionality of the prokaryotic community reveals that sulfur, nitrogen, methane and carbon fixation metabolism functions are present in the samples. This study is the first to provide new insights into the prokaryotic community composition from this unusual aquatic desert site. Further studies will be helpful to obtain a better understanding of the biotic and abiotic mechanisms residing in stromatolites from Laguna Interna, as well as to have better knowledge about the formation of these biosignatures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the early archaean era of Australia. Nature 441:714–718

    CAS  PubMed  Google Scholar 

  2. Alonso H, Risacher F (1996) Geoquímica del Salar de Atacama, parte 1: origen de los componentes y balance salino. Andean Geol 23:113–122

    CAS  Google Scholar 

  3. Anderson NL, Barret KL, Jones SE, Belovsky GE (2020) Impact of abiotic factors on microbialite growth (Great Salt Lake, Utah, USA): a tank experiment. Hydrobiología 847:2113–2122

    CAS  Google Scholar 

  4. Arp G, Thiel V, Reimer A, Michaelis W, Reitner J (1999) Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA. Sediment Geol 126:159–176

    CAS  Google Scholar 

  5. Aßhauer KP, Wemheuer B, Daniel R, Meinicke P (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31:2882–2884

    PubMed  PubMed Central  Google Scholar 

  6. Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH, Spear JR, Przekop KM, Visscher PT (2006) Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment Geol 185:131–145

    CAS  Google Scholar 

  7. Benzerara K, Meibom A, Gautier Q, Kazmierczak J, Stolarski J, Menguy N, Brown GE (2010) Nanotextures of aragonite in stromatolites from the quasi-marine Satonda crater lake, Indonesia. Geol Soc London Spec Publ 336:211–224

    CAS  Google Scholar 

  8. Bevacqua P (1992) Geomorfología del salar de Atacama y estratigrafía de su núcleo y delta, Segunda Región de Antofagasta, Chile. Memoria de Título (Inédito), Universidad Católica del Norte, Facultad de Ingeniería y Ciencias Geólogicas, pp 284. Antofagasta.

  9. Breitbart M, Hoare A, Nitti A, Siefert J, Haynes M, Dinsdale E, Edwards R, Souza V, Rohwer F, Hollander D (2009) Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Cienegas. Mexico Environ Microbiol 11:16–34

    CAS  PubMed  Google Scholar 

  10. Bruker AXS (2009) Topas V4.2: general profile and structure analysis software for powder diffraction data. Bruker AXS, Karlsruhe, Germany

    Google Scholar 

  11. Burne RV, Moore LS (1987) Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2:241–254

    Google Scholar 

  12. Burns BP, Goh F, Allen M, Neilan BA (2004) Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay. Australia Environ Microbiol 6:1096–1101

    CAS  PubMed  Google Scholar 

  13. Cabrera S, Pizarro G (1994) Changes in chlorophyll a concentration, copepod abundance and UV and PAR penetration in the water column during the ozone depletion in Antarctic Lake Kitiesh, 1992. Adv Limnol/ergeb Limnol 43:123–134

    CAS  Google Scholar 

  14. Cáceres L, Gomez-Silva B, Garro XB, Rodriguez V, Monardes V, McKay CP (2007) Relative humidity patterns and fog water precipitation in the Atacama Desert and biological implications. J. Geophys. Res 112:G054S14

    Google Scholar 

  15. Cai M, Liu Y, Zhou Z, Yang Y, Pan J, Gu J-D et al (2018) Asgard archaea are diverse, ubiquitous, and transcriptionally active microbes. bioRxiv. https://doi.org/10.1101/374165

    Article  Google Scholar 

  16. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108:4516–4522

    CAS  PubMed  Google Scholar 

  17. Casaburi G, Duscher AA, Reid RP, Foster JS (2016) Characterization of the stromatolite microbiome from Little Darby Island, the Bahamas using predictive and whole shotgun metagenomic analysis. Environ Microbiol 18:1452–1469

    CAS  PubMed  Google Scholar 

  18. Chagas AA, Webb GE, Burne RV, Southam G (2016) Modern lacustrine microbialites: towards a synthesis of aqueous and carbonate geochemistry and mineralogy. Earth Sci Rev 162:338–363

    CAS  Google Scholar 

  19. Church MJ (2008) Resource control of bacterial dynamics in the sea. In: Kirchman DL, Church MJ (eds) Microbial ecology of the oceans. Wiley, Hoboken, NJ, pp 335–382

    Google Scholar 

  20. Clarke JDA (2006) Antiquity of aridity in the Chilean Atacama Desert. Geomorphology 73:101–114

    Google Scholar 

  21. Couradeau E, Benzerara K, Moreira D, Gérard E, Kázmierczak J, Tavera R, López-García P (2011) Prokaryotic and eukatyotic community structure in field and cultured microbialites from the alkaline lake Alchichica (Mexico). PLoS ONE 6:e28767

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dorador C, Fink P, Hengst M, Icaza G, Villalobos AS, Vejar D, Meneses D, Zadjelovic V, Burmann L, Moelzner J, Harrod C (2018) Microbial community composition and trophic role along a marked salinity gradient in Laguna Puilar, Salar de Atacama, Chile. Antonie Van Leeuwenhoek 111:1361–1374

    PubMed  Google Scholar 

  23. Dunai TJ, Lopez GAG, Juez-Larre J (2005) Oligocene-Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms. Geology 33:321–324

    Google Scholar 

  24. Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13(429):438

    Google Scholar 

  25. Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162

    CAS  Google Scholar 

  26. Farías ME, Contreras M, Rasuk MC, Kurth D, Flores MR, Poiré DG, Novoa F, Visscher PT (2014) Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: tebenquiche and La Brava, Salar de Atacama, Chile. Extremophiles 18:311–329

    PubMed  Google Scholar 

  27. Farias ME, Rasuk MC, Gallagher KL, Contreras M, Kurth D, Fernandez AB et al (2017) Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems at La Brava, a hypersaline lake at Salar de Atacama, Chile. PLoS ONE 12:e0186867

    PubMed  PubMed Central  Google Scholar 

  28. Fernandez AB, Rasuk MC, Visscher PT, Contreras M, Novoa F, Poire DG, Patterson MM, Ventosa A, Farias ME (2016) Microbial diversity in sediment ecosystems (evaporites domes, microbial mats, and crusts) of hypersaline Laguna Tebenquiche, Salar de Atacama. Chile Front Microbiol 7:1284

    PubMed  Google Scholar 

  29. Fernandez AB, Visscher PT, Rasuk MC, Contreras Leiva M, Farías ME (2020) Prokaryotic diversity at the hypersaline laguna Tebenquiche in the Salar de Atacama, Chile. Chapter 10. In: Farías ME (ed) Microbial ecosystems in central andes extreme environments. Springer Nature Switzerland AG 2020

    Google Scholar 

  30. Foster JS, Babilonia J, Parke-Suosaari E, Reid RP (2020) Stromatolites, biosignatures, and astrobiological implications. Chapter 4. In: Souza V et al (eds) Astrobiology and Cuatro Ciénegas Basin as an analog of early earth, Cuatro Ciénegas Basin: an endangered Hyperdiverse Oasis. Springer Nature Switzerland AG 2020. https://doi.org/10.1007/978-3-030-46087-7_4

    Chapter  Google Scholar 

  31. Gallagher KL, Kading TJ, Braissant O, Dupraz C, Visscher PT (2012) Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate-reducing bacteria. Geobiology 10:518–530

    CAS  PubMed  Google Scholar 

  32. Gérard E, De Goeyse S, Hugoni M, Agogue H, Richard L, Milesi V et al (2018) Key role of Alphaproteobacteria and Cyanobacteria in the formation of stromatolites of Lake Dziani Dzaha (Mayotte, Western Indian Ocean). Front Microbiol 9:796

    PubMed  PubMed Central  Google Scholar 

  33. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  34. Havemann SA, Foster JS (2008) Comparative characterization of the microbial diversities of an artificial microbialite model and a natural stromatolite. Appl Environ Microbiol 74(7410):7421

    Google Scholar 

  35. Houston J, Hartley AJ (2003) The central Andean west-slope rain shadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. Int J Climatol 23:1453–1464

    Google Scholar 

  36. ICAAS (2014) Informe final: análisis de los mecanismos de evaporación y evaluación de los recursos hídricos del salar de Atacama. Santiago, Chile, p 323p

    Google Scholar 

  37. Iniesto M, Moreira D, Reboul G, Deschamps P, Benzerara K, Bertolino P, Shaga A, Tavera R, López-García P (2021) Core microbial communities of lacustrine microbialites sampled along an alkalinity gradient. Environ Microbiol 23:51–68

    PubMed  Google Scholar 

  38. Lara J, González LE, Ferrero M, Díaz GC, Pedros-Alio C, Demergasso C (2012) Enrichment of arsenic transforming and resistant heterotrophic bacteria from sediments of two salt lakes in Northern Chile. Extremophiles 16:523–538

    CAS  PubMed  Google Scholar 

  39. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu X, Monger HC, Whitford WG (2007) Calcium carbonate in termite galleries–biomineralization or upward transport? Biogeochemistry 82:241–250

    CAS  Google Scholar 

  41. Liu Y, Zhou Z, Pan J et al (2018) Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota. ISME j 12:1021

    CAS  PubMed  PubMed Central  Google Scholar 

  42. López-García P, Kazmierczak J, Benzerara K, Kempe S, Guyot F, Moreira D (2005) Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey. Extremophiles 9:263–274

    PubMed  Google Scholar 

  43. Louyakis AS, Mobberley JM, Vitek BE, Visscher T, Hagan PD, Reid RP, Kozdon R, Orland IJ, Valley JW, Planavsky NJ et al (2017) A study of the microbial spatial heterogeneity of Bahamian thrombolites using molecular, biochemical, and stable isotope analyses. Astrobiology 17:413–430

    CAS  PubMed  Google Scholar 

  44. MacLeod F, Kindler GS, Wong HL, Chen R, Burns BP (2019) Asgard archaea: diversity, function, and evolutionary implications in a range of microbiomes. AIMS Microbiol 5:48–61

    CAS  PubMed  PubMed Central  Google Scholar 

  45. McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mobberley JM, Ortega MC, Foster JS (2012) Comparative microbial diversity analyses of modern marine thrombolitic mats by barcoded pyrosequencing. Environ Microbiol 14:82–100

    CAS  PubMed  Google Scholar 

  47. Mobberley JM, Khodadad CL, Foster JS (2013) Metabolic potential of lithifying cyanobacteria-dominated thrombolitic mats. Photosynth Res 118:125–140

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Osman JR, Fernandes G, Regeard C, DuBow M (2018) Variation of bacterial biodiversity from saline soils and estuary sediments present near the Mediterranean Sea coast of Camargue (France). Antonie Van Leeuwenhoek 112:351–365

    PubMed  Google Scholar 

  49. Osman JR, Viedma P, Mendoza J, Cotorás D (2020) Bacterial community structure of modern field living and aquarium cultured thrombolites from Lake Sarmiento, Torres del Paine National Park of Chilean Patagonia. Geomicrobiol j 37:376–388

    CAS  Google Scholar 

  50. Pruesse E, Peplies J, Glockner FO (2012) SINA: accurate high-throughput multiple sequence 562 alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    CAS  PubMed  Google Scholar 

  52. Rech JA, Currie BS, Michalski G, Cowan AM (2006) Neogene climate change and uplift in the Atacama Desert, Chile. Geology 34:761–764

    Google Scholar 

  53. Risacher F, Alonso H, Salazar C (2003) The origin of brines and salts in Chilean salars: a hydrochemical review. Earth Sci Rev 63:249–293

    CAS  Google Scholar 

  54. Ruvindy R, White RA 3rd, Neilan BA, Burns BP (2016) Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics. ISME J 10:183–196

    CAS  PubMed  Google Scholar 

  55. Saghaï A, Zivanovic Y, Zeyen N, Moreira D, Benzerara K, Deschamps P et al (2015) Metagenome based diversity analyses suggest a significant contribution of non-cyanobacterial lineages to carbonate precipitation in modern microbialites. Front Microbiol 6:797

    PubMed  PubMed Central  Google Scholar 

  56. Saghaï A, Gutiérrez-Preciado A, Deschamps P et al (2017) Unveiling microbial interactions in stratified mat communities from a warm saline shallow pond. Environ Microbiol 19:2405–2421

    PubMed  PubMed Central  Google Scholar 

  57. Santos F, Peña A, Nogales B, Soria-Soria E, García del Cura MA, González-Martín JA, Antón J (2010) Bacterial diversity in dry modern freshwater stromatolites from Ruidera Pools Natural Park, Spain. Syst Appl Microbiol 33:209–221

    CAS  PubMed  Google Scholar 

  58. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Seitz KW, Lazar CS, Hinrichs KU et al (2016) Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J 10:1696

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Solari MA, Hervé F, Le Roux JP, Airo A, Sial AN (2010) Paleoclimatic significance of lacustrine microbialites: a stable isotope case study of two lakes at Torres del Paine, southern Chile. Paleogeogr Paleoclimatol Paleoecol 297:70–82

    Google Scholar 

  61. Spadafora A, Perri E, McKenzie JA, Vasconcelos C (2010) Microbial biomineralization processes forming modern Ca: Mg carbonate stromatolites. Sedimentology 57:27–40

    CAS  Google Scholar 

  62. Spang A, Saw JH, Jørgensen SL et al (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Thompson I, Mackey B, McNulty S, Mosseler A (2009) Forest resilience, biodiversity, and climate change: a synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Secretariat of the Convention on Biological Diversity, Montreal, Technical Series No. 43, pp 1–67

  64. Toneatti DM, Albarracín VH, Flores MR, Polerecky L, Farías ME (2017) Stratified bacterial diversity along physico-chemical gradients in high-altitude modern stromatolites. Front Microbiol 8:646

    PubMed  PubMed Central  Google Scholar 

  65. Vasconcelos C, Dittrich M, McKenzie JA (2014) Evidence of microbiocoenosis in the formation of laminae in modern stromatolites. Facies 60:3–13

    Google Scholar 

  66. Visscher PT, Stolz JF (2005) Microbial mats as bioreactors: populations process, and products. Paleogeogr Paleoclimatol Paleoecol 219:87–100

    Google Scholar 

  67. Warden JG, Casaburi G, Omelon CR, Bennett PC, Breecker DO, Foster JS (2016) Characterization of microbial mat microbiomes in the modern thrombolite ecosystem of Lake Clifton, Western Australia using shotgun metagenomics. Front Microbiol 7:1064

    PubMed  PubMed Central  Google Scholar 

  68. Wong HL, White RA, Visscher PT et al (2018) Disentangling the drivers of functional complexity at the metagenomic level in Shark Bay microbial mat microbiomes. ISME j 12:2619

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu S, Zhu Z, Fu L, Niu B, Li W (2011) WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genom. https://doi.org/10.1186/1471-2164-12-444

    Article  Google Scholar 

  70. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glockner FO (2014) The SILVA and “Allspecies Living Tree Project (LTP)” taxonomic frameworks. Nucl Acids Res 42:D643–D648

    CAS  PubMed  Google Scholar 

  71. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH et al (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541:353–358

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to the Comunidad Atacameña de Peine for granting us access to the sampling site. We thank all the members from the Laboratorio de Biotecnología, Departamento de Bioquímica y Biología Molecular from the Universidad de Chile for their interesting discussions. We also thank Mr. Andrés Ibañez, from the Laboratorio de Cristalografía, Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile for his help in the XRD analyses. This work was supported by FONDEF [CA13I10019 and IT16M10002] (ANID), Chile.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jorge R. Osman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by A. Oren.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 10 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Osman, J.R., Viedma, P., Mendoza, J. et al. Prokaryotic diversity and biogeochemical characteristics of field living and laboratory cultured stromatolites from the hypersaline Laguna Interna, Salar de Atacama (Chile). Extremophiles 25, 327–342 (2021). https://doi.org/10.1007/s00792-021-01232-1

Download citation

Keywords

  • Stromatolite
  • 16S rRNA
  • Prokaryotic community
  • Minerals