Skip to main content
Log in

Cultivation and characterization of snowbound microorganisms from the South Pole

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Little is known about microbial ecosystems of interior Antarctica, if indeed such ecosystems exist. Although considerable research has assessed microorganisms indigenous to coastal regions of Antarctica, particularly their lakes, ponds, and soils, to our knowledge only one characterized bacterium, a strain of Pseudomonas, has been isolated from South Pole ice or snow. Metagenomic community analyses described in this work and elsewhere reveal that a diversity of bacteria exists in inland polar snows, yet attempts to culture and characterize these microbes from this extreme environment have been few to date. In this molecular and culture-dependent investigation of the microbiology of inland Antarctica, we enriched and isolated two new strains of bacteria and one strain of yeast (Fungi) from South Pole snow samples. The bacteria were of the genera Methylobacterium and Sphingomonas, and the yeast grouped with species of Naganishia (class Tremellocytes). In addition to phylogenetic analyses, characterization of these isolates included determinations of cell morphology, growth as a function of temperature, salinity tolerance, and carbon and energy source versatility. All organisms were found to be cold-adapted, and the yeast strain additionally showed considerable halotolerance. These descriptions expand our understanding of the diversity and metabolic activities of snowbound microorganisms of interior Antarctica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achberger AM, Christner BC, Michaud AB, Priscu JC, Skidmore ML, Vick-Majors TJ, the WISSARD Science Team (2016) Microbial community structure of subglacial Lake Whillans West Antarctica. Front Microbiol 7:1457

    Article  PubMed  PubMed Central  Google Scholar 

  • Aislabie J, Foght J, Saul D (2000) Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica. Polar Biol 23:183–188

    Article  Google Scholar 

  • Baker JM, Vander Schaaf NA, Cunningham AMG, Hang AC, Reeves CL, Huffman ER, Riester CJ, Madigan MT, Sattley WM (2019) Chemoorganotrophic bacteria from Lake Fryxell, Antarctica, including Pseudomonas strain LFY10, a cold-adapted, halotolerant bacterium useful in teaching labs. Front Microbiol 10:156

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at −10 degrees C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326

    Article  PubMed  Google Scholar 

  • Baraniecki CA, Aislabie J, Foght JM (2002) Characterization of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microb Ecol 43:44–54

    Article  CAS  PubMed  Google Scholar 

  • Bell RE, Seroussi H (2020) History, mass loss, structure, and dynamic behavior of the Antarctic Ice Sheet. Science 367:1321–1325

    Article  CAS  PubMed  Google Scholar 

  • Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ (2015) Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 13:677–690

    Article  CAS  PubMed  Google Scholar 

  • Bottos EM, Scarrow JW, Archer SDJ, McDonald IR, Cary SC (2014) Bacterial community structures of Antarctic soils. In: Cowan DA (ed) Antarctic terrestrial microbiology. Springer-Verlag, Berlin, pp 9–33

    Chapter  Google Scholar 

  • Buck JD (1982) Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buonaurio R, Stravato VM, Kosako Y, Fujiwara N, Naka T, Kobayashi K, Cappelli C, Eiko Y (2002) Sphingomonas melonis sp. nov., a novel pathogen that causes brown spots on yellow Spanish melon fruits. Int J Syst Evol Microbiol 52:2081–2087

    CAS  PubMed  Google Scholar 

  • Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66:4514–4517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christner BC, Kvitko BH II, Reeve JN (2003) Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183

    Article  CAS  PubMed  Google Scholar 

  • Christner BC, Skidmore ML, Priscu JC, Tranter M, Foreman CM (2008) Bacteria in subglacial environments. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 51–71

    Chapter  Google Scholar 

  • Clocksin KM, Jung DO, Madigan MT (2007) Cold-active chemoorganotrophic bacteria from the permanently ice-covered Lake Hoare, McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 73:3077–3083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  CAS  PubMed  Google Scholar 

  • Coleman AW, Mai JC (1997) Ribosomal DNA ITS-1 and ITS-2 sequence comparisons as a tool for predicted genetic relatedness. J Mol Evol 45:168–177

    Article  CAS  PubMed  Google Scholar 

  • Connell LB, Redman RS, Craig SD, Scorzetti G, Iszard M, Rodriguez RJ (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb Ecol 56:448–459

    Article  CAS  PubMed  Google Scholar 

  • Connell L, Segee B, Redman R, Rodriguez RJ, Staudigel H (2018) Biodiversity and abundance of cultured microfungi from the permanently ice-covered Lake Fryxell. Antarctica. Life 8:37

    Google Scholar 

  • Darling CA, Siple PA (1940) Bacteria of Antarctica. J Bacteriol 42:83–98

    Article  Google Scholar 

  • Dourado MN, Andreote FD, Dini-Andreote F, Conti R, Araújo JM, Araújo WL (2012) Analysis of 16S rRNA and mxaF genes reveling insights into Methylobacterium niche-specific plant association. Genet Mol Biol 35:142–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green PN, Bousfield IJ (1983) Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov. Int J Syst Bacteriol 33:875–877

    Article  Google Scholar 

  • Ito H, Iizuka H (1971) Taxonomic studies on a radio-resistant Pseudomonas Part XII. Studies on the microorganisms of cereal grain. Agr Biol Chem 35:1566–1571

    Google Scholar 

  • Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191:3195–3202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung DO, Achenbach LA, Karr EA, Takaichi S, Madigan MT (2004) A gas vesiculate planktonic strain of the purple non-sulfur bacterium Rhodoferax antarcticus isolated from Lake Fryxell, Dry Valleys, Antarctica. Arch Microbiol 182:236–243

    Article  CAS  PubMed  Google Scholar 

  • Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 to −20°C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junge K, Eicken H, Swanson BD, Deming JW (2006) Bacterial incorporation of leucine into protein down to −20°C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiol 52:417–429

    Article  CAS  Google Scholar 

  • Karr EA, Sattley WM, Jung DO, Madigan MT, Achenbach LA (2003) Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Appl Environ Microbiol 69:4910–4914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karr EA, Sattley WM, Rice MR, Jung DO, Madigan MT, Achenbach LA (2005) Diversity and distribution of sulfate-reducing bacteria in permanently frozen Lake Fryxell, McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 71:6353–6359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karr EA, Ng JM, Belchik SM, Sattley WM, Madigan MT, Achenbach LA (2006) Biodiversity of methanogenic and other Archaea in the permanently frozen Lake Fryxell, Antarctica. Appl Environ Microbiol 72:1663–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato Y, Asahara M, Goto K, Kasai H, Yokota A (2008) Methylobacterium persicinum sp. nov., Methylobacterium komagatae sp. nov., Methylobacterium brachiatum sp. nov., Methylobacterium tardum sp. nov. and Methylobacterium gregans sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 58:1334–1341

    Article  Google Scholar 

  • Kenarova A, Encheva M, Chipeva V, Chipev N, Hristova P, Moncheva P (2012) Physiological diversity of bacterial communities from different soil locations on Livingston Island, South Shetland archipelago, Antarctica. Polar Biol 36:223–233

    Article  Google Scholar 

  • Kneif C, Dengler V, Bodelier PLE, Vorholt JA (2012) Characterization of Methylobacterium strains isolated from the phyllosphere and the description of Methylobacterium longum sp. nov. Ant van Leeuwenhoek 101:169–183

    Article  Google Scholar 

  • Kochkina G, Ivanushkina N, Ozerskaya S, Chigineva N, Vasilenko O, Firsov S, Spirina E, Gilichinsky D (2012) Ancient fungi in Antarctic permafrost environments. FEMS Microbiol Ecol 82:501–509

    Article  CAS  PubMed  Google Scholar 

  • Kong Y (2011) Btrim: a fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics 98:152–153

    Google Scholar 

  • Kwon M, Kim M, Takacs-Vesbach C, Lee J, Hong SG, Kim SJ, Priscu JC, Kim O-S (2017) Niche specialization of bacteria in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Environmental Microbiology 19 (6):2258-2271

    Article  CAS  PubMed  Google Scholar 

  • Leewis M-C, Berlemont R, Podgorski DC, Srinivas A, Zito P, Spencer RGM, McFarland J, Douglas TA, Conaway CH, Waldrop M, Mackelprang R (2020) Life at the frozen limit: microbial carbon metabolism across a late Pleistocene permafrost chronosequence. Front Microbiol 11:1753

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu XZ, Wang QM, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov AM, Boekhout T, Bai Y (2015) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147

    Article  PubMed  Google Scholar 

  • Madigan MT, Jung DO, Woese CR, Achenbach LA (2000) Rhodoferax antarcticus sp. nov., a psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat. Arch Microbiol 173:269–277

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT, Kempher ML, Bender KS, Sullivan P, Sattley WM, Dohnalkova AC, Joye SB (2017) Characterization of a cold-active bacterium isolated from the South Pole “Ice Tunnel.” Extremophiles 21:891–901

    Article  CAS  PubMed  Google Scholar 

  • Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  PubMed  PubMed Central  Google Scholar 

  • Mokrani S, Nabti E-h, Cruz C (2020) Current advances in plant growth promoting bacteria alleviating salt stress for sustainable agriculture. Appl Sci 10:7025

    Article  CAS  Google Scholar 

  • Parte AC (2018) LPSN—List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Sys Evol Microbiol 68:1825–1829

    Article  Google Scholar 

  • Poniecka EA, Bagshaw EA, Sass H, Segar A, Webster G, Williamson C, Anesio AM, Tranter M (2020) Physiological capabilities of cryoconite hole microorganisms. Front Microbiol 11:1783

    Article  PubMed  PubMed Central  Google Scholar 

  • Price PB (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci USA 97:1247–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA 101:4631–4636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price PB, Nagomov OV, Bay R, Chirkin D, He Y, Miocinovic P, Richards A, Woschnagg K, Koci B, Zagorodnov V (2002) Temperature profile for glacial ice at the South Pole: implications for life in a nearby subglacial lake. Proc Natl Acad Sci USA 99:7844–7847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell AM, Mikucki JA, Achberger AM, Alekhina IA, Barbante C, Christner BC, Ghosh D, Michaud AB, Mitchell AC, Priscu JC, Scherer R, Skidmore ML, Vick-Majors TJ, the WISSARD Science Team (2014) Microbial sulfur transformations in sediments from subglacial Lake Whillans. Front Microbiol 5:594

    Article  PubMed  PubMed Central  Google Scholar 

  • Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter I, Herbold C, Lee CK, McDonald IR, Barrett JE, Cary SC (2014) Influence of soil properties on archaeal diversity and distribution in the McMurdo Dry Valleys, Antarctica. FEMS Microbiol Ecol 89:347–357

    Article  CAS  PubMed  Google Scholar 

  • Rohde RA, Price PB (2007) Diffusion-controlled metabolism for long-term survival of single isolated microorganisms trapped within ice crystals. Proc Natl Acad Sci USA 104:16592–16597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sattley WM, Madigan MT (2006) Isolation, characterization and ecology of cold-active chemolithotrophic sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. Appl Environ Microbiol 72:5562–5568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sattley WM, Madigan MT (2007) Cold-active acetogenic bacteria from surficial sediments of perennially ice-covered Lake Fryxell, Antarctica. FEMS Microbiol Lett 272:48–54

    Article  CAS  PubMed  Google Scholar 

  • Sattley WM, Madigan MT (2010) Temperature and nutrient induced responses of Lake Fryxell sulfate-reducing prokaryotes and description of Desulfovibrio lacusfryxellense sp. nov., a pervasive, cold-active, sulfate-reducing bacterium from Lake Fryxell, Antarctica. Extremophiles 14:357–366

    Article  PubMed  Google Scholar 

  • Sattley WM, Jung DO, Madigan MT (2008) Psychrosinus fermentans gen. nov., a lactate-fermenting bacterium from near-freezing oxycline waters of a meromictic Antarctic lake. FEMS Microbiol Lett 287:121–127

    Article  CAS  PubMed  Google Scholar 

  • Schmidt SK, Vimercati L, Darcy JL, Arán P, Gendron EMS, Solon AJ, Porazinska D, Dorador C (2017) A Naganishia in high places: functioning populations or dormant cells from the atmosphere? Mycology 8:153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serafim LS, Xavier AMRB, Lemos PC (2018) Storage of hydrophobic polymers in bacteria. In: Geiger O (ed) Biogenesis of fatty acids, lipids and membranes. Handbook of hydrocarbon and lipid microbiology. Springer, Cham, pp 1–25

    Google Scholar 

  • Slemmons C, Johnson G, Connell LB (2013) Application of an automated ribosomal intergenic spacer analysis database for identification of cultured Antarctic fungi. Antarct Sci 25:44–50

    Article  Google Scholar 

  • Smith JJ, Tow LH, Stafford W, Cary C, Cowan DA (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microb Ecol 51:413–421

    Article  PubMed  Google Scholar 

  • Smith BE, Fricker HA, Joughin IR, Tulaczyk S (2009) An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). J Glaciol 55:573–595

    Article  Google Scholar 

  • Spickler AR (2013) Cryptococcosis. http://www.cfsph.iastate.edu/DiseaseInfo/factsheets.php. Accessed 21 July 2020

  • Stecher G, Tamura K, Kumar S (2020) Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol Biol Evol 37:1237–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takacs CD, Priscu JC (1998) Bacterioplankton dynamics in the McMurdo Dry Valley lakes, Antarctica: production and biomass loss over four seasons. Microb Ecol 36:239–250

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi M, Sakane T, Yanagi M, Yamasato K, Hamana K, Yokota A (1995) Taxonomic study of bacteria isolated from plants: Proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int J Syst Evol Microbiol 45:334–341

    CAS  Google Scholar 

  • Tang C, Madigan MT, Lanoil B (2013) Bacterial and archaeal diversity in sediments of West Lake Bonney, McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 79:1034–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tregoning GS, Kempher ML, Jung DO, Samarkin VA, Joye SB, Madigan MT (2015) A halophilic bacterium inhabiting the warm, CaCl2-rich brine of the perennially ice-covered Lake Vanda, McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 81:1988–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuorto SJ, Darias P, McGuinness LR, Panikov N, Zhang T, Haggblom MM, Kerkhof LJ (2013) Bacterial genome replication at subzero temperatures in permafrost. ISME J 8:139–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Turkiewicz M, Gromek E, Kalinowska H, Zielińska M (1999) Biosynthesis and properties of an extracellular metalloprotease from the Antarctic marine bacterium Sphingomonas paucimobilis. J Biotechnol 70:53–60

    Article  CAS  Google Scholar 

  • Ugolini FC, Bockheim JG (2008) Antarctic soils and soil formation in a changing environment: a review. Geoderma 144:1–8

    Article  CAS  Google Scholar 

  • Vadivukkarasi P, Jayashree S, Seshadri S (2018) Occurrence and ecological significance of Methylobacterium. Trop Ecol 59:575–587

    CAS  Google Scholar 

  • Vander Schaaf NA, Cunningham AMG, Cluff BP, Kraemer CK, Reeves CL, Riester CJ, Slater LK, Madigan MT, Sattley WM (2015) Cold-active, heterotrophic bacteria from the highly oligotrophic waters of Lake Vanda, Antarctica. Microorganisms 3:391–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vishniac HS, Kurtzman CP (1992) Cryptococcus antarcticus sp. nov. and Cryptococcus albidosimilis sp. nov., basidioblastomycetes from Antarctic soils. Int J Syst Bacteriol 42:547–553

    Article  Google Scholar 

  • Wright A, Siegert M (2012) A fourth inventory of Antarctic subglacial lakes. Antarct Sci 24:659–664

    Article  Google Scholar 

  • Wu L, Wen C, Qin Y, Yin H, Tu Q, van Nostrand JD, Yuan T, Yuan M, Deng Y, Zhou J (2015) Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol 15:125

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang B, Wang Y, Qian P-Y (2016) Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics 17:135

    Article  PubMed  PubMed Central  Google Scholar 

  • Yim MS, Yau YCW, Matlow A, So JS, Zou J, Flemming CA, Schraft H, Leung KT (2010) A novel selective growth medium-PCR assay to isolate and detect Sphingomonas in environmental samples. J Microbiol Meth 82:19–27

    Article  CAS  Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimbro MJ, Power DA, Miller SM, Wilson GE, Johnson JA (2009) Microbiological culture media. Difco & BBL manual of microbiological culture media, vol 520, 2nd edn. Becton Dickinson and Company, Sparks, MD, pp 441–442

    Google Scholar 

Download references

Acknowledgments

South Pole ice sample collection was supported by NASA Exobiology/Astrobiology Program Award NNX11AG45G to SBJ and MTM, and we thank Paul Sullivan, United States Antarctic Program, Amundsen-Scott Station, for help in sample collection. Support for the culture-dependent component of this study was provided by the Indiana Wesleyan University (IWU) Division of Natural Sciences and the IWU Hodson Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Matthew Sattley.

Additional information

Communicated by A. Driessen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayward, M.K., Dewey, E.D., Shaffer, K.N. et al. Cultivation and characterization of snowbound microorganisms from the South Pole. Extremophiles 25, 159–172 (2021). https://doi.org/10.1007/s00792-021-01218-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-021-01218-z

Navigation