Advertisement

Extremophiles

, Volume 23, Issue 4, pp 479–486 | Cite as

Characterization of a thermoactive endoglucanase isolated from a biogas plant metagenome

  • Barbara KlippelEmail author
  • Saskia Blank
  • Viktoria-Astrid Janzer
  • Henning Piascheck
  • Cyril Moccand
  • Rachid Bel-Rhlid
  • Garabed Antranikian
Original Paper
  • 99 Downloads

Abstract

A metagenomic library from DNA isolated from a biogas plant was constructed and screened for thermoactive endoglucanases to gain insight into the enzymatic diversity involved in plant biomass breakdown at elevated temperatures. Two cellulase-encoding genes were identified and the corresponding proteins showed sequence similarities of 59% for Cel5A to a putative cellulase from Anaerolinea thermolimosa and 99% for Cel5B to a characterized endoglucanase isolated from a biogas plant reactor. The cellulase Cel5A consists of one catalytical domain showing sequence similarities to glycoside hydrolase family 5 and comprises 358 amino acids with a predicted molecular mass of 41.2 kDa. The gene coding for cel5A was successfully cloned and expressed in Escherichia coli C43(DE3). The recombinant protein was purified to homogeneity using affinity chromatography with a specific activity of 182 U/mg, and a yield of 74%. Enzymatic activity was detectable towards cellulose and mannan containing substrates and over a broad temperature range from 40 °C to 70 °C and a pH range from 4.0 to 7.0 with maximal activity at 55 °C and pH 5.0. Cel5A showed high thermostability at 60 °C without loss of activity after 24 h. Due to the enzymatic characteristics, Cel5A is an attractive candidate for the degradation of lignocellulosic material.

Keywords

Biogas plant, metagenomic library Cellulase Thermostability 

Notes

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410CrossRefGoogle Scholar
  2. Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012) Expasy: sib bioinformatics resource portal. Nucleic Acids Res 40((Web Server issue)):W597–W603CrossRefGoogle Scholar
  3. Béguin P (1983) Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas. Anal Biochem 131(2):333–336CrossRefGoogle Scholar
  4. Ben Hania W, Godbane R, Postec A, Hamdi M, Ollivier B, Fardeau ML (2012) Defluviitoga tunisiensis gen. nov., sp. nov., a thermophilic bacterium isolated from a mesothermic and anaerobic whey digester. Int J Syst Evol Microbiol 62(Pt 6):1377–1382CrossRefGoogle Scholar
  5. Bernfeld P (1955) Amylases, alpha and beta. Methods Enzymol 1:149–158CrossRefGoogle Scholar
  6. Britton HTS, Robinson RA (1931) Universal buffer solutions and the dissociation constant of veronal. J Chem Soc:1456–1473Google Scholar
  7. Elleuche S, Schaefers C, Blank S, Schröder C, Antranikian G (2015) Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 25:113–119CrossRefGoogle Scholar
  8. Ethier N, Talbot G, Sygusch J (1998) Gene cloning, DNA sequencing, and expression of thermostable beta-mannanase from Bacillus stearothermophilus. Appl Environ Microbiol 64(11):4428–4432Google Scholar
  9. Gomes E, Rodrigues de Souza A, Ladino-Orjuela G, Da Silva R, Oliveira T, Rodrigues A (2016) Applications and benefits of thermophilic microorganisms and their enzymes for industrial biotechnology.  https://doi.org/10.1007/978-3-319-27951-0_21
  10. Hall J, Hazlewood GP, Barker PJ, Gilbert HJ (1988) Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for catalytic activity. Gene 69(1):29–38CrossRefGoogle Scholar
  11. Henrissat B (1998) Glycosidase families. Biochem Soc Trans 26(2):153–156CrossRefGoogle Scholar
  12. Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7(5):637–644CrossRefGoogle Scholar
  13. Ilmberger N, Streit WR (2017) Screening for cellulase encoding clones in metagenomic libraries. Methods Mol Biol 1539:205–217CrossRefGoogle Scholar
  14. Ilmberger N, Meske D, Juergensen J, Schulte M, Barthen P, Rabausch U, Angelov A, Mientus M, Liebl W, Schmitz RA, Streit WR (2012) Metagenomic cellulases highly tolerant towards the presence of ionic liquids-linking thermostability and halotolerance. Appl Microbiol Biotechnol 95(1):135–146CrossRefGoogle Scholar
  15. Klippel B, Antranikian G (2011) Lignocellulose converting enzymes from thermophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 443–474CrossRefGoogle Scholar
  16. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage t4. Nature 227(5259):680–685CrossRefGoogle Scholar
  17. Lewin A, Zhou J, Pham VTT, Haugen T, Zeiny ME, Aarstad O, Liebl W, Wentzel A, Liles MR (2017) Novel archaeal thermostable cellulases from an oil reservoir metagenome. AMB Express 7(1):183CrossRefGoogle Scholar
  18. Li LL, Taghavi S, McCorkle SM, Zhang YB, Blewitt MG, Brunecky R, Adney WS, Himmel ME, Brumm P, Drinkwater C, Mead DA, Tringe SG, Lelie D (2011) Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases. Biotechnol Biofuels 4(1):23CrossRefGoogle Scholar
  19. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (cazy) in 2013. Nucleic Acids Res 42((Database issue)):D490–D495CrossRefGoogle Scholar
  20. Maus I, Koeck DE, Cibis KG, Hahnke S, Kim YS, Langer T, Kreubel J, Erhard M, Bremges A, Off S, Stolze Y, Jaenicke S, Goesmann A, Sczyrba A, Scherer P, Konig H, Schwarz WH, Zverlov VV, Liebl W, Puhler A, Schluter A, Klocke M (2016) Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates. Biotechnol Biofuels 9:171CrossRefGoogle Scholar
  21. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energ Combust 38(4):522–550CrossRefGoogle Scholar
  22. Navas J, Béguin P (1992) Site-induced mutagenesis of conserved residues of Clostridium thermocellum endoglucanase celc. Biochem Biophys Res Communi 189(2):807–812CrossRefGoogle Scholar
  23. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) Signalp 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786CrossRefGoogle Scholar
  24. Sambrook J, Fritsch E, Maniatis T (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  25. Urbieta MS, Donati ER, Chan KG, Shahar S, Sin LL, Goh KM (2015) Thermophiles in the genomic era: biodiversity, science, and applications. Biotechnol Adv 33(6 Pt 1):633–647CrossRefGoogle Scholar
  26. Wang Q, Tull D, Meinke A, Gilkes NR, Warren RA, Aebersold R, Withers SG (1993) Glu280 is the nucleophile in the active site of Clostridium thermocellum CelC, a family A endo-beta-1,4-glucanase. J Biol Chem 268(19):14096–14102Google Scholar
  27. Wanmolee W, Sornlake W, Rattanaphan N, Suwannarangsee S, Laosiripojana N, Champreda V (2016) Biochemical characterization and synergism of cellulolytic enzyme system from Chaetomium globosum on rice straw saccharification. BMC Biotechnol 16(1):82CrossRefGoogle Scholar
  28. Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, Kamagata Y (2006) Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes anaerolineae classis nov. and caldilineae classis nov. In the bacterial phylum chloroflexi. Int J Syst Evol Microbiol 56(Pt 6):1331–1340CrossRefGoogle Scholar
  29. Zhao C, Chu Y, Li Y, Yang C, Chen Y, Wang X, Liu B (2017) High-throughput pyrosequencing used for the discovery of a novel cellulase from a thermophilic cellulose-degrading microbial consortium. Biotechnol Lett 39(1):123–131CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Barbara Klippel
    • 1
    Email author
  • Saskia Blank
    • 1
  • Viktoria-Astrid Janzer
    • 1
  • Henning Piascheck
    • 1
  • Cyril Moccand
    • 2
  • Rachid Bel-Rhlid
    • 2
  • Garabed Antranikian
    • 1
  1. 1.Institute of Technical MicrobiologyHamburg University of Technology (TUHH)HamburgGermany
  2. 2.Chemistry and Biotechnology Department, Nestlé Research CenterInstitute of Materials ScienceLausanneSwitzerland

Personalised recommendations