Advertisement

Extremophiles

, Volume 23, Issue 3, pp 305–317 | Cite as

Temperature adaptation of DNA ligases from psychrophilic organisms

  • Kristel Berg
  • Ingar Leiros
  • Adele WilliamsonEmail author
Original Paper
  • 137 Downloads

Abstract

DNA ligases operating at low temperatures have potential advantages for use in biotechnological applications. For this reason, we have characterized the temperature optima and thermal stabilities of three minimal Lig E-type ATP-dependent DNA ligase originating from Gram-negative obligate psychrophilic bacteria. The three ligases, denoted Vib-Lig, Psy-Lig, and Par-Lig, show a remarkable range of thermal stabilities and optima, with the first bearing all the hallmarks of a genuinely cold-adapted enzyme, while the latter two have activity and stability profiles more typical of mesophilic proteins. A comparative approach based on sequence comparison and homology modeling indicates that the cold-adapted features of Vib-Lig may be ascribed to differences in surface charge rather than increased local or global flexibility which is consistent with the contemporary emerging paradigm of the physical basis of cold adaptation of enzymes.

Keywords

ATP-dependent DNA ligase Psychrophile Enzyme activity Temperature optima 

Notes

Acknowledgements

This research was supported by Research Council Norway [244247, 2015]; Funding for open access charge was granted by the publication fund at the University of Tromsø.

Supplementary material

792_2019_1082_MOESM1_ESM.docx (773 kb)
Supplementary material 1 (DOCX 772 kb)

References

  1. Aghajari N, Feller G, Gerday C, Haser R (1998) Structures of the psychrophilic Alteromonas haloplanctis alpha-amylase give insights into cold adaptation at a molecular level. Structure 6:1503–1516CrossRefGoogle Scholar
  2. Aittaleb M, Hubner R, Lamotte-Brasseur J, Gerday C (1997) Cold adaptation parameters derived from cDNA sequencing and molecular modelling of elastase from Antarctic fish Notothenia neglecta. Protein Eng 10:475–477CrossRefGoogle Scholar
  3. Akey D, Martins A, Aniukwu J, Glickman MS, Shuman S, Berger JM (2006) Crystal structure and nonhomologous end-joining function of the ligase component of Mycobacterium DNA ligase D. J Biol Chem 281:13412–13423.  https://doi.org/10.1074/jbc.M513550200 CrossRefGoogle Scholar
  4. Al Khudary R, Stosser NI, Qoura F, Antranikian G (2008) Pseudoalteromonas arctica sp. nov., an aerobic, psychrotolerant, marine bacterium isolated from Spitzbergen. Int J Syst Evol Microbiol 58:2018–2024.  https://doi.org/10.1099/ijs.0.64963-0 CrossRefGoogle Scholar
  5. Åqvist J, Isaksen GV, Brandsdal BO (2017) Computation of enzyme cold adaptation. Nat Rev Chem 1:0051.  https://doi.org/10.1038/s41570-017-0051 CrossRefGoogle Scholar
  6. Arcus VL et al (2016) On the temperature dependence of enzyme-catalyzed rates. Biochemistry 55:1681–1688.  https://doi.org/10.1021/acs.biochem.5b01094 CrossRefGoogle Scholar
  7. Bauer RJ, Jurkiw TJ, Evans TC Jr, Lohman GJ (2017) Rapid time scale analysis of T4 DNA ligase-DNA binding. Biochemistry 56:1117–1129.  https://doi.org/10.1021/acs.biochem.6b01261 CrossRefGoogle Scholar
  8. Biasini M et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258.  https://doi.org/10.1093/nar/gku340 CrossRefGoogle Scholar
  9. Chambers CR, Patrick WM (2015) Archaeal nucleic acid ligases and their potential in biotechnology. Archaea (Vancouver, BC) 2015:170571.  https://doi.org/10.1155/2015/170571 Google Scholar
  10. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23.  https://doi.org/10.1016/j.femsre.2004.06.005 CrossRefGoogle Scholar
  11. D’Amico S et al (2002) Molecular basis of cold adaptation. Philos T Roy Soc B 357:917–924.  https://doi.org/10.1098/rstb.2002.1105 CrossRefGoogle Scholar
  12. D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389.  https://doi.org/10.1038/sj.embor.7400662 CrossRefGoogle Scholar
  13. Daniel RM, Danson MJ (2013) Temperature and the catalytic activity of enzymes: a fresh understanding. FEBS Lett 587:2738–2743.  https://doi.org/10.1016/j.febslet.2013.06.027 CrossRefGoogle Scholar
  14. Davail S, Feller G, Narinx E, Gerday C (1994) Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile subtilisin from the antarctic psychrophile Bacillus. TA41 J Biol Chem 269:17448–17453Google Scholar
  15. Doherty AJ, Suh SW (2000) Structural and mechanistic conservation in DNA ligases. Nucleic Acids Res 28:4051–4058.  https://doi.org/10.1093/nar/28.21.4051 CrossRefGoogle Scholar
  16. Doherty AJ, Wigley DB (1999) Functional domains of an ATP-dependent DNA ligase. J Mol Biol 285:63–71.  https://doi.org/10.1006/jmbi.1998.2301 CrossRefGoogle Scholar
  17. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, Baker NA (2007) PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35:W522–W525.  https://doi.org/10.1093/nar/gkm276 CrossRefGoogle Scholar
  18. Duplantis BN, Bosio CM, Nano FE (2011) Temperature-sensitive bacterial pathogens generated by the substitution of essential genes from cold-loving bacteria: potential use as live vaccines. J Mol Med JMM 89:437–444.  https://doi.org/10.1007/s00109-010-0721-3 CrossRefGoogle Scholar
  19. Dwivedi N, Dube D, Pandey J, Singh B, Kukshal V, Ramachandran R, Tripathi RP (2008) NAD(+)-dependent DNA ligase: a novel target waiting for the right inhibitor. Med Res Rev 28:545–568.  https://doi.org/10.1002/med.20114 CrossRefGoogle Scholar
  20. Egidius E, Wiik R, Andersen K, Hoff KA, Hjeltnes B (1986) Vibrio salmonicida sp. nov., a new fish pathogen. Int J Syst Evol Microbiol 36:518–520.  https://doi.org/10.1099/00207713-36-4-518 Google Scholar
  21. Ellenberger T, Tomkinson AE (2008) Eukaryotic DNA ligases: structural and functional insights. Annu Rev Biochem 77:313–338.  https://doi.org/10.1146/annurev.biochem.77.061306.123941 CrossRefGoogle Scholar
  22. Ericsson UB, Hallberg BM, DeTitta GT, Dekker N, Nordlund P (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357:289–298.  https://doi.org/10.1016/j.ab.2006.07.027 CrossRefGoogle Scholar
  23. Feller G (2003) Molecular adaptations to cold in psychrophilic enzymes. Cell Mol Life Sci 60:648–662.  https://doi.org/10.1007/s00018-003-2155-3 CrossRefGoogle Scholar
  24. Fraternali F, Cavallo L (2002) Parameter optimized surfaces (POPS): analysis of key interactions and conformational changes in the ribosome. Nucleic Acids Res 30:2950–2960CrossRefGoogle Scholar
  25. Georlette D, Jonsson ZO, Van Petegem F, Chessa J, Van Beeumen J, Hubscher U, Gerday C (2000) A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins to low temperatures. Eur J Biochem 267:3502–3512CrossRefGoogle Scholar
  26. Georlette D, Damien B, Blaise V, Depiereux E, Uversky VN, Gerday C, Feller G (2003) Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. J Biol Chem 278:37015–37023.  https://doi.org/10.1074/jbc.M305142200 CrossRefGoogle Scholar
  27. Groudieva T, Grote R, Antranikian G (2003) Psychromonas arctica sp. nov., a novel psychrotolerant, biofilm-forming bacterium isolated from Spitzbergen. Int J Syst Evol Microbiol 53:539–545.  https://doi.org/10.1099/ijs.0.02182-0 CrossRefGoogle Scholar
  28. Huston AL, Methe B, Deming JW (2004) Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Appl Environ Microbiol 70:3321–3328.  https://doi.org/10.1128/aem.70.6.3321-3328.2004 CrossRefGoogle Scholar
  29. Isaksen GV, Åqvist J, Brandsdal BO (2016) Enzyme surface rigidity tunes the temperature dependence of catalytic rates. Proc Natl Acad Sci 113:7822–7827.  https://doi.org/10.1073/pnas.1605237113 CrossRefGoogle Scholar
  30. Kaminski AM et al (2018) Structures of DNA-bound human ligase IV catalytic core reveal insights into substrate binding and catalysis. Nat Commun 9:2642.  https://doi.org/10.1038/s41467-018-05024-8 CrossRefGoogle Scholar
  31. Kazuoka T, Oikawa T, Muraoka I, Si Kuroda, Soda K (2007) A cold-active and thermostable alcohol dehydrogenase of a psychrotorelant from Antarctic seawater, Flavobacterium frigidimaris KUC-1. Extremophiles 11:257–267.  https://doi.org/10.1007/s00792-006-0034-1 CrossRefGoogle Scholar
  32. Kim DJ, Kim O, Kim HW, Kim HS, Lee SJ, Suh SW (2009) ATP-dependent DNA ligase from Archaeoglobus fulgidus displays a tightly closed conformation. Acta Crystallogr Sect F-Struct Biol Cryst Commun 65:544–550.  https://doi.org/10.1107/s1744309109017485 CrossRefGoogle Scholar
  33. Leiros HK, Willassen NP, Smalas AO (1999) Residue determinants and sequence analysis of cold-adapted trypsins. Extremophiles 3:205–219CrossRefGoogle Scholar
  34. Leiros I, Moe E, Lanes O, Smalas AO, Willassen NP (2003) The structure of uracil-DNA glycosylase from Atlantic cod (Gadus morhua) reveals cold-adaptation features. Acta Crystallogr D Biol Crystallogr 59:1357–1365CrossRefGoogle Scholar
  35. Lohman GJS, Chen LX, Evans TC (2011) Kinetic characterization of single strand break ligation in duplex DNA by T4 DNA ligase. J Biol Chem 286:44187–44196.  https://doi.org/10.1074/jbc.M111.284992 CrossRefGoogle Scholar
  36. Magnet S, Blanchard JS (2004) Mechanistic and kinetic study of the ATP-dependent DNA ligase of Neisseria meningitidis. Biochemistry 43:710–717.  https://doi.org/10.1021/bi0355387 CrossRefGoogle Scholar
  37. Martinez RM, Megli CJ, Taylor RK (2010) Growth and laboratory maintenance of Vibrio cholerae. Curr Protoc Microbiol 6:1.  https://doi.org/10.1002/9780471729259.mc06a01s17 Google Scholar
  38. McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238:777–793.  https://doi.org/10.1006/jmbi.1994.1334 CrossRefGoogle Scholar
  39. Metpally RP, Reddy BV (2009) Comparative proteome analysis of psychrophilic versus mesophilic bacterial species: insights into the molecular basis of cold adaptation of proteins. BMC Genom 10:11.  https://doi.org/10.1186/1471-2164-10-11 CrossRefGoogle Scholar
  40. Nair PA, Nandakumar J, Smith P, Odell M, Lima CD, Shuman S (2007) Structural basis for nick recognition by a minimal pluripotent DNA ligase. Nat Struct Mol Biol 14:770–778 http://www.nature.com/nsmb/journal/v14/n8/suppinfo/nsmb1266_S1.html
  41. Nishida H, Kiyonari S, Ishino Y, Morikawa K (2006) The closed structure of an archaeal DNA ligase from Pyrococcus furiosus. J Mol Biol 360:956–967.  https://doi.org/10.1016/j.jmb.2006.05.062 CrossRefGoogle Scholar
  42. Novak HR, Sayer C, Panning J, Littlechild JA (2013) Characterisation of an L-haloacid dehalogenase from the marine psychrophile Psychromonas ingrahamii with potential industrial application. Mar Biotechnol (New York, NY) 15:695–705.  https://doi.org/10.1007/s10126-013-9522-3 CrossRefGoogle Scholar
  43. Pascal JM, O’Brien PJ, Tomkinson AE, Ellenberger T (2004) Human DNA ligase I completely encircles and partially unwinds nicked DNA. Nature 432:473–478.  https://doi.org/10.1038/nature03082 CrossRefGoogle Scholar
  44. Pascal JM et al (2006) A flexible interface between DNA ligase and PCNA supports conformational switching and efficient ligation of DNA. Mol Cell 24:279–291.  https://doi.org/10.1016/j.molcel.2006.08.015 CrossRefGoogle Scholar
  45. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth 8:785–786 http://www.nature.com/nmeth/journal/v8/n10/abs/nmeth.1701.html#supplementary-information
  46. Petrova T et al (2012) ATP-dependent DNA ligase from Thermococcus sp. 1519 displays a new arrangement of the OB-fold domain. Acta Crystallogr Sect F Struct Biol Cryst Commun 68:1440–1447.  https://doi.org/10.1107/s1744309112043394 CrossRefGoogle Scholar
  47. Pitcher RS, Brissett NC, Doherty AJ (2007a) Nonhomologous end-joining in bacteria: a microbial perspective. Annu Rev Microbiol 61:259–282.  https://doi.org/10.1146/annurev.micro.61.080706.093354 CrossRefGoogle Scholar
  48. Pitcher RS, Green AJ, Brzostek A, Korycka-Machala M, Dziadek J, Doherty AJ (2007b) NHEJ protects mycobacteria in stationary phase against the harmful effects of desiccation. DNA Repair. 6:1271–1276.  https://doi.org/10.1016/j.dnarep.2007.02.009 CrossRefGoogle Scholar
  49. Płociński P et al (2017) DNA Ligase C and Prim-PolC participate in base excision repair in mycobacteria. Nat Commun 8:1251.  https://doi.org/10.1038/s41467-017-01365-y CrossRefGoogle Scholar
  50. Russell NJ (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4:83–90.  https://doi.org/10.1007/s007920050141 CrossRefGoogle Scholar
  51. Russell RJ, Gerike U, Danson MJ, Hough DW, Taylor GL (1998) Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure 6:351–361CrossRefGoogle Scholar
  52. Saavedra HG, Wrabl JO, Anderson JA, Li J, Hilser VJ (2018) Dynamic allostery can drive cold adaptation in enzymes. Nature 558:324–328.  https://doi.org/10.1038/s41586-018-0183-2 CrossRefGoogle Scholar
  53. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Meth 9:671–675CrossRefGoogle Scholar
  54. Shi K et al (2018) T4 DNA ligase structure reveals a prototypical ATP-dependent ligase with a unique mode of sliding clamp interaction. Nucleic Acids Res.  https://doi.org/10.1093/nar/gky776 Google Scholar
  55. Shuman S (2009) DNA Ligases: progress and prospects. J Biol Chem 284:17365–17369.  https://doi.org/10.1074/jbc.R900017200 CrossRefGoogle Scholar
  56. Shuman S, Glickman MS (2007) Bacterial DNA repair by non-homologous end joining. Nat Rev Microbiol 5:852–861.  https://doi.org/10.1038/nrmicro1768 CrossRefGoogle Scholar
  57. Siddiqui KS et al (2006) Role of lysine versus arginine in enzyme cold-adaptation: modifying lysine to homo-arginine stabilizes the cold-adapted alpha-amylase from Pseudoalteramonas haloplanktis. Proteins 64:486–501CrossRefGoogle Scholar
  58. Smalas AO, Leiros HK, Os V, Willassen NP (2000) Cold adapted enzymes. Biotechnol Annu Rev 6:1–57CrossRefGoogle Scholar
  59. Struvay C, Feller G (2012) Optimization to low temperature activity in psychrophilic enzymes. Int J Mol Sci 13:11643–11665.  https://doi.org/10.3390/ijms130911643 CrossRefGoogle Scholar
  60. Subramanya HS, Doherty AJ, Ashford SR, Wigley DB (1996) Crystal structure of an ATP-dependent DNA ligase from bacteriophage T7. Cell 85:607–615CrossRefGoogle Scholar
  61. Tanabe M, Ishino Y, Nishida H (2015) From structure–function analyses to protein engineering for practical applications of DNA ligase. Archaea (Vancouver, BC) 2015:267570.  https://doi.org/10.1155/2015/267570 Google Scholar
  62. van der Kamp MW, Prentice EJ, Kraakman KL, Connolly M, Mulholland AJ, Arcus VL (2018) Dynamical origins of heat capacity changes in enzyme-catalysed reactions. Nat Commun 9:1177.  https://doi.org/10.1038/s41467-018-03597-y CrossRefGoogle Scholar
  63. Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8(52–56):29Google Scholar
  64. Wallon G et al (1997) Sequence and homology model of 3-isopropylmalate dehydrogenase from the psychrotrophic bacterium Vibrio sp. I5 suggest reasons for thermal instability. Protein Eng 10:665–672CrossRefGoogle Scholar
  65. Wei J, Timler JG, Knutson CM, Barney BM (2013) Branched-chain 2-keto acid decarboxylases derived from Psychrobacter. Fems Microbiol Lett 346:105–112.  https://doi.org/10.1111/1574-6968.12208 CrossRefGoogle Scholar
  66. Wilkinson A, Day J, Bowater R (2001) Bacterial DNA ligases. Mol Microbiol 40:1241–1248CrossRefGoogle Scholar
  67. Williamson A, Pedersen H (2014) Recombinant expression and purification of an ATP-dependent DNA ligase from Aliivibrio salmonicida. Protein Expres Purif 97:29–36.  https://doi.org/10.1016/j.pep.2014.02.008 CrossRefGoogle Scholar
  68. Williamson A, Rothweiler U, Schroder Leiros H-K (2014) Enzyme-adenylate structure of a bacterial ATP-dependent DNA ligase with a minimized DNA-binding surface. Acta Crystallogr Sect D 70:3043–3056.  https://doi.org/10.1107/S1399004714021099 CrossRefGoogle Scholar
  69. Williamson A, Hjerde E, Kahlke T (2016) Analysis of the distribution and evolution of the ATP-dependent DNA ligases of bacteria delineates a distinct phylogenetic group ‘Lig E’. Mol Microbiol 99:274–290.  https://doi.org/10.1111/mmi.13229 CrossRefGoogle Scholar
  70. Williamson A, Grgic M, Leiros HS (2018) DNA binding with a minimal scaffold: structure–function analysis of Lig E DNA ligases. Nucleic Acids Res 46:8616–8629.  https://doi.org/10.1093/nar/gky622 CrossRefGoogle Scholar
  71. Zhao JS, Deng Y, Manno D, Hawari J (2010) Shewanella spp. genomic evolution for a cold marine lifestyle and in situ explosive biodegradation. PLoS One 5:9109.  https://doi.org/10.1371/journal.pone.0009109 CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryThe University of Tromsø- The Arctic University of NorwayTromsøNorway

Personalised recommendations