Enrichment of anaerobic heterotrophic thermophiles from four Azorean hot springs revealed different community composition and genera abundances using recalcitrant substrates


DGGE analysis combined with a metagenomic approach was used to get insights into heterotrophic anoxic enrichment cultures of four hot springs of Vale das Furnas, Portugal, using the recalcitrant substrate spent coffee ground (SCG). Parallel enrichment cultures were performed using the major components of spent coffee ground, namely arabinogalactan, galactomannan, cellulose, and proteins. DGGE revealed that heterotrophic thermophilic bacteria are highly abundant in the hydrothermal springs and significant differences in community composition depending on the substrate were observed. DNA, isolated from enrichment cultures of different locations that were grown on the same substrate were pooled, and the respective metagenomes were analyzed. Results indicated that cultures grown on recalcitrant substrate SCG consists of a totally different thermophilic community, dominated by Dictyoglomus. Enrichments with galactomannan and arabinogalactan were dominated by Thermodesulfovibrio, while cultures with casein and cellulose were dominated by Thermus. This study indicates the high potential of thermophilic bacteria degrading recalcitrant substrate such as SCG and furthermore how the accessibility to complex polymers shapes the bacterial community.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. Alvarez L, Bricio C, Blesa A et al (2014) Transferable denitrification capability of Thermus thermophilus. Appl Environ Microbiol 80:19–28. https://doi.org/10.1128/AEM.02594-13

    Article  PubMed  PubMed Central  Google Scholar 

  2. Antranikian G, Suleiman M, Schäfers C, Adams MWW, Bartolucci S, Blamey JM et al (2017) Diversity of bacteria and archaea from two shallow marine hydrothermal vents from Vulcano Island. Extremophiles 21:733–742. https://doi.org/10.1007/s00792-017-0938-y

    Article  PubMed  Google Scholar 

  3. Blumer-Schuette SE, Lewis DL, Kelly RM (2010) Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor. Appl Environ Microbiol 76:8084–8092. https://doi.org/10.1128/AEM.01400-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Campos-Vega R, Loarca-Piña G, Vergara-Castañeda HA, Oomah BD (2015) Spent coffee grounds: a review on current research and future prospects. Trends Food Sci Technol 45:24–36. https://doi.org/10.1016/j.tifs.2015.04.012

    Article  CAS  Google Scholar 

  5. Dini-Andreote F, De Cássia Pereira E, Silva M, Triadó-Magarit X et al (2014) Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning. ISME J 8:1989–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gao D, Uppugundla N, Chundawat SP et al (2011) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 4:5. https://doi.org/10.1186/1754-6834-4-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. He Q, Hemme CL, Jiang H et al (2011) Bioresource Technology Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp. Bioresour Technol 102:9586–9592. https://doi.org/10.1016/j.biortech.2011.07.098

    Article  CAS  PubMed  Google Scholar 

  8. Huson DH, Beier S, Flade I et al (2016) MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol 12:1–12. https://doi.org/10.1371/journal.pcbi.1004957

    Article  CAS  Google Scholar 

  9. Koeck DE, Pechtl A, Zverlov V, Schwarz WH (2014) Genomics of cellulolytic bacteria. Curr Opin Biotechnol 29:171–183. https://doi.org/10.1016/j.copbio.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  10. Li Q, Qiao W, Wang X et al (2015) Kinetic characterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and waste activated sludge. Waste Manag 36:77–85. https://doi.org/10.1016/j.wasman.2014.11.016

    Article  CAS  PubMed  Google Scholar 

  11. Liu H, Zhang T, Fang HHP (2003) Thermophilic H2 production from a cellulose-containing wastewater. Biotechnol Lett 25:365–369

    Article  CAS  PubMed  Google Scholar 

  12. Mussatto SI, Carneiro LM, Silva JPA et al (2011) A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydr Polym 83:368–374. https://doi.org/10.1016/j.carbpol.2010.07.063

    Article  CAS  Google Scholar 

  13. Sahm K, John P, Nacke H et al (2013) High abundance of heterotrophic prokaryotes in hydrothermal springs of the Azores as revealed by a network of 16S rRNA gene-based methods. Extremophiles 17:649–662. https://doi.org/10.1007/s00792-013-0548-2

    Article  CAS  PubMed  Google Scholar 

  14. Saiki T, Kobayashi Y, Kawagoe K, Beppu T (1985) Dictyoglomus thermophilum gen. Nov., sp. nov., a chemoorganotrophic, anaerobic, thermophilic bacterium. Int J Syst Bacteriol 35:253–259

    Article  Google Scholar 

  15. Shi R, Li Z, Ye Q et al (2013) Heterologous expression and characterization of a novel thermo-halotolerant endoglucanase Cel5H from Dictyoglomus thermophilum. Bioresour Technol 142:338–344. https://doi.org/10.1016/j.biortech.2013.05.037

    Article  CAS  PubMed  Google Scholar 

  16. Simões J, Nunes FM, Domingues MR, Coimbra MA (2013) Extractability and structure of spent coffee ground polysaccharides by roasting pre-treatments. Carbohydr Polym 97:81–89. https://doi.org/10.1016/j.carbpol.2013.04.067

    Article  CAS  PubMed  Google Scholar 

  17. Van Den Berg EM, Van Dongen U, Abbas B, Van Loosdrecht MCM (2015) Enrichment of DNRA bacteria in a continuous culture. ISME J 9:2153–2161. https://doi.org/10.1038/ismej.2015.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vishnivetskaya TA, Hamilton-Brehm SD, Podar M et al (2014) Community analysis of plant biomass-degrading microorganisms from obsidian pool, yellowstone national park. Microb Ecol 69:333–345. https://doi.org/10.1007/s00248-014-0500-8

    Article  CAS  PubMed  Google Scholar 

  19. Wanga Y, Wanga X, Tanga R et al (2010) A novel thermostable cellulase from Fervidobacterium nodosum. J Mol Catal B Enzym 66:294–301. https://doi.org/10.1016/j.molcatb.2010.06.006

    Article  CAS  Google Scholar 

  20. Wongwilaiwalin S, Rattanachomsri U, Laothanachareon T et al (2010) Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzyme Microb Technol 47:283–290. https://doi.org/10.1016/j.enzmictec.2010.07.013

    Article  CAS  Google Scholar 

  21. Xu Z, Yu G, Zhang X et al (2014) The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter decomposition along the northern slope of Changbai Mountain. Appl Soil Ecol 86:19–29. https://doi.org/10.1016/j.apsoil.2014.09.015

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Garabed Antranikian.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by H. Atomi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suleiman, M., Klippel, B., Busch, P. et al. Enrichment of anaerobic heterotrophic thermophiles from four Azorean hot springs revealed different community composition and genera abundances using recalcitrant substrates. Extremophiles 23, 277–281 (2019). https://doi.org/10.1007/s00792-019-01079-7

Download citation


  • Spent coffee ground
  • Enrichment cultures
  • Thermophiles,
  • Microbial diversity