Advertisement

Enrichment of anaerobic heterotrophic thermophiles from four Azorean hot springs revealed different community composition and genera abundances using recalcitrant substrates

  • Marcel Suleiman
  • Barbara Klippel
  • Philip Busch
  • Christian Schäfers
  • Cyril Moccand
  • Rachid Bel-Rhlid
  • Stefan Palzer
  • Garabed AntranikianEmail author
Original Paper

Abstract

DGGE analysis combined with a metagenomic approach was used to get insights into heterotrophic anoxic enrichment cultures of four hot springs of Vale das Furnas, Portugal, using the recalcitrant substrate spent coffee ground (SCG). Parallel enrichment cultures were performed using the major components of spent coffee ground, namely arabinogalactan, galactomannan, cellulose, and proteins. DGGE revealed that heterotrophic thermophilic bacteria are highly abundant in the hydrothermal springs and significant differences in community composition depending on the substrate were observed. DNA, isolated from enrichment cultures of different locations that were grown on the same substrate were pooled, and the respective metagenomes were analyzed. Results indicated that cultures grown on recalcitrant substrate SCG consists of a totally different thermophilic community, dominated by Dictyoglomus. Enrichments with galactomannan and arabinogalactan were dominated by Thermodesulfovibrio, while cultures with casein and cellulose were dominated by Thermus. This study indicates the high potential of thermophilic bacteria degrading recalcitrant substrate such as SCG and furthermore how the accessibility to complex polymers shapes the bacterial community.

Keywords

Spent coffee ground Enrichment cultures Thermophiles, Microbial diversity 

Notes

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interests.

References

  1. Alvarez L, Bricio C, Blesa A et al (2014) Transferable denitrification capability of Thermus thermophilus. Appl Environ Microbiol 80:19–28.  https://doi.org/10.1128/AEM.02594-13 CrossRefPubMedGoogle Scholar
  2. Antranikian G, Suleiman M, Schäfers C, Adams MWW, Bartolucci S, Blamey JM et al (2017) Diversity of bacteria and archaea from two shallow marine hydrothermal vents from Vulcano Island. Extremophiles 21:733–742.  https://doi.org/10.1007/s00792-017-0938-y CrossRefPubMedGoogle Scholar
  3. Blumer-Schuette SE, Lewis DL, Kelly RM (2010) Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor. Appl Environ Microbiol 76:8084–8092.  https://doi.org/10.1128/AEM.01400-10 CrossRefPubMedGoogle Scholar
  4. Campos-Vega R, Loarca-Piña G, Vergara-Castañeda HA, Oomah BD (2015) Spent coffee grounds: a review on current research and future prospects. Trends Food Sci Technol 45:24–36.  https://doi.org/10.1016/j.tifs.2015.04.012 CrossRefGoogle Scholar
  5. Dini-Andreote F, De Cássia Pereira E, Silva M, Triadó-Magarit X et al (2014) Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning. ISME J 8:1989–2001CrossRefPubMedGoogle Scholar
  6. Gao D, Uppugundla N, Chundawat SP et al (2011) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 4:5.  https://doi.org/10.1186/1754-6834-4-5 CrossRefPubMedGoogle Scholar
  7. He Q, Hemme CL, Jiang H et al (2011) Bioresource Technology Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp. Bioresour Technol 102:9586–9592.  https://doi.org/10.1016/j.biortech.2011.07.098 CrossRefPubMedGoogle Scholar
  8. Huson DH, Beier S, Flade I et al (2016) MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol 12:1–12.  https://doi.org/10.1371/journal.pcbi.1004957 CrossRefGoogle Scholar
  9. Koeck DE, Pechtl A, Zverlov V, Schwarz WH (2014) Genomics of cellulolytic bacteria. Curr Opin Biotechnol 29:171–183.  https://doi.org/10.1016/j.copbio.2014.07.002 CrossRefPubMedGoogle Scholar
  10. Li Q, Qiao W, Wang X et al (2015) Kinetic characterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and waste activated sludge. Waste Manag 36:77–85.  https://doi.org/10.1016/j.wasman.2014.11.016 CrossRefPubMedGoogle Scholar
  11. Liu H, Zhang T, Fang HHP (2003) Thermophilic H2 production from a cellulose-containing wastewater. Biotechnol Lett 25:365–369CrossRefPubMedGoogle Scholar
  12. Mussatto SI, Carneiro LM, Silva JPA et al (2011) A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydr Polym 83:368–374.  https://doi.org/10.1016/j.carbpol.2010.07.063 CrossRefGoogle Scholar
  13. Sahm K, John P, Nacke H et al (2013) High abundance of heterotrophic prokaryotes in hydrothermal springs of the Azores as revealed by a network of 16S rRNA gene-based methods. Extremophiles 17:649–662.  https://doi.org/10.1007/s00792-013-0548-2 CrossRefPubMedGoogle Scholar
  14. Saiki T, Kobayashi Y, Kawagoe K, Beppu T (1985) Dictyoglomus thermophilum gen. Nov., sp. nov., a chemoorganotrophic, anaerobic, thermophilic bacterium. Int J Syst Bacteriol 35:253–259CrossRefGoogle Scholar
  15. Shi R, Li Z, Ye Q et al (2013) Heterologous expression and characterization of a novel thermo-halotolerant endoglucanase Cel5H from Dictyoglomus thermophilum. Bioresour Technol 142:338–344.  https://doi.org/10.1016/j.biortech.2013.05.037 CrossRefPubMedGoogle Scholar
  16. Simões J, Nunes FM, Domingues MR, Coimbra MA (2013) Extractability and structure of spent coffee ground polysaccharides by roasting pre-treatments. Carbohydr Polym 97:81–89.  https://doi.org/10.1016/j.carbpol.2013.04.067 CrossRefPubMedGoogle Scholar
  17. Van Den Berg EM, Van Dongen U, Abbas B, Van Loosdrecht MCM (2015) Enrichment of DNRA bacteria in a continuous culture. ISME J 9:2153–2161.  https://doi.org/10.1038/ismej.2015.26 CrossRefPubMedGoogle Scholar
  18. Vishnivetskaya TA, Hamilton-Brehm SD, Podar M et al (2014) Community analysis of plant biomass-degrading microorganisms from obsidian pool, yellowstone national park. Microb Ecol 69:333–345.  https://doi.org/10.1007/s00248-014-0500-8 CrossRefPubMedGoogle Scholar
  19. Wanga Y, Wanga X, Tanga R et al (2010) A novel thermostable cellulase from Fervidobacterium nodosum. J Mol Catal B Enzym 66:294–301.  https://doi.org/10.1016/j.molcatb.2010.06.006 CrossRefGoogle Scholar
  20. Wongwilaiwalin S, Rattanachomsri U, Laothanachareon T et al (2010) Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzyme Microb Technol 47:283–290.  https://doi.org/10.1016/j.enzmictec.2010.07.013 CrossRefGoogle Scholar
  21. Xu Z, Yu G, Zhang X et al (2014) The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter decomposition along the northern slope of Changbai Mountain. Appl Soil Ecol 86:19–29.  https://doi.org/10.1016/j.apsoil.2014.09.015 CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Marcel Suleiman
    • 1
  • Barbara Klippel
    • 1
  • Philip Busch
    • 1
  • Christian Schäfers
    • 1
  • Cyril Moccand
    • 2
  • Rachid Bel-Rhlid
    • 2
  • Stefan Palzer
    • 2
  • Garabed Antranikian
    • 1
    Email author
  1. 1.Institute of Technical MicrobiologyHamburg University of TechnologyHamburgGermany
  2. 2.Nestlé Research CentreLausanneSwitzerland

Personalised recommendations