, Volume 23, Issue 2, pp 229–238 | Cite as

A linear pathway for mevalonate production supports growth of Thermococcus kodakarensis

  • Geraldy L. S. Liman
  • Tyler Hulko
  • Hallie P. Febvre
  • Aaron C. Brachfeld
  • Thomas J. SantangeloEmail author
Original Paper


The sole unifying feature of Archaea is the use of isoprenoid-based glycerol lipid ethers to compose cellular membranes. The branched hydrocarbon tails of archaeal lipids are synthesized via the polymerization of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), but many questions still surround the pathway(s) that result in production of IPP and DMAPP in archaeal species. Isotopic-labeling strategies argue for multiple biological routes for production of mevalonate, but biochemical and bioinformatic studies support only a linear pathway for mevalonate production. Here, we use a combination of genetic and biochemical assays to detail the production of mevalonate in the model archaeon Thermococcus kodakarensis. We demonstrate that a single, linear pathway to mevalonate biosynthesis is essential and that alternative routes of mevalonate production, if present, are not biologically sufficient to support growth in the absence of the classical mevalonate pathway resulting in IPP production from acetyl-CoA. Archaeal species provide an ideal platform for production of high-value isoprenoids in large quantities, and the results obtained provide avenues to further increase the production of mevalonate to drive isoprenoid production in archaeal hosts.


Mevalonate MVA pathway HMG-CoA reductase Isoprenoid Thermococcus kodakarensis 



We thank members of the Santangelo laboratory for assistance with manuscript preparation and editing. These studies were supported by funding from the Department of Energy, Basic Energy Sciences Division, Grant DE-SC0014597 to TJS.


  1. Aslam M, Horiuchi A, Simons J-R et al (2017) Engineering of a hyperthermophilic archaeon, Thermococcus kodakarensis, that displays chitin-dependent hydrogen production. Appl Environ Microbiol 83:e00280–e00317. CrossRefGoogle Scholar
  2. Azami Y, Hattori A, Nishimura H et al (2014) (R)-Mevalonate 3-phosphate is an intermediate of the mevalonate pathway in Thermoplasma acidophilum. J Biol Chem 289:15957–15967. CrossRefGoogle Scholar
  3. Benvegnu T, Lemiègre L, Cammas-Marion S (2009) New generation of liposomes called archaeosomes based on natural or synthetic archaeal lipids as innovative formulations for drug delivery. Recent Pat Drug Deliv Formul 3:206–220CrossRefGoogle Scholar
  4. Bischoff KM, Rodwell VW (1996) 3-Hydroxy-3-methylglutaryl-coenzyme A reductase from Haloferax volcanii: purification, characterization, and expression in Escherichia coli. J Bacteriol 178:19–23CrossRefGoogle Scholar
  5. Bochar DA, Brown JR, Doolittle WF et al (1997) 3-hydroxy-3-methylglutaryl coenzyme A reductase of Sulfolobus solfataricus: DNA sequence, phylogeny, expression in Escherichia coli of the hmgA gene, and purification and kinetic characterization of the gene product. J Bacteriol 179:3632–3638CrossRefGoogle Scholar
  6. Caforio A, Driessen AJM (2017) Archaeal phospholipids: structural properties and biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids 1862:1325–1339. CrossRefGoogle Scholar
  7. Catchpole R, Gorlas A, Oberto J, Forterre P (2018) A series of new E. coli—thermococcus shuttle vectors compatible with previously existing vectors. Extremophiles 1:4. Google Scholar
  8. Cubonová L, Richardson T, Burkhart BW et al (2013) Archaeal DNA polymerase D but not DNA polymerase B is required for genome replication in Thermococcus kodakarensis. J Bacteriol 195:2322–2328. CrossRefGoogle Scholar
  9. Delasalle C, de March CA, Meierhenrich UJ et al (2014) Structure–Odor relationships of semisynthetic β-santalol analogs. Chem Biodivers 11:1843–1860. CrossRefGoogle Scholar
  10. Farkas JA, Picking JW, Santangelo TJ (2013) Genetic techniques for the archaea. Annu Rev Genet 47:539–561. CrossRefGoogle Scholar
  11. Fuke T, Sato T, Jha S et al (2018) Phytoene production utilizing the isoprenoid biosynthesis capacity of Thermococcus kodakarensis. Extremophiles 22:301–313. CrossRefGoogle Scholar
  12. Fukui T, Atomi H, Kanai T et al (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15:352–363. CrossRefGoogle Scholar
  13. Gehring A, Sanders T, Santangelo TJ (2017) Markerless gene editing in the hyperthermophilic archaeon Thermococcus kodakarensis. BIO-PROTOCOL 7:4. CrossRefGoogle Scholar
  14. George KW, Alonso-Gutierrez J, Keasling JD, Lee TS (2015) Isoprenoid drugs, biofuels, and chemicals—artemisinin, farnesene, and beyond. Adv Biochem Eng Biotechnol 148:355–389. Google Scholar
  15. Hayakawa H, Motoyama K, Sobue F et al (2018) Modified mevalonate pathway of the archaeon Aeropyrum pernix proceeds via trans-anhydromevalonate 5-phosphate. Proc Natl Acad Sci 115:10034–10039. CrossRefGoogle Scholar
  16. Hileman TH, Santangelo TJ (2012) Genetics techniques for Thermococcus kodakarensis. Front Microbiol 3:195. CrossRefGoogle Scholar
  17. Jacobsen A-C, Jensen SM, Fricker G et al (2017) Archaeal lipids in oral delivery of therapeutic peptides. Eur J Pharm Sci 108:101–110. CrossRefGoogle Scholar
  18. Jacquemet A, Barbeau J, Lemiègre L, Benvegnu T (2009) Archaeal tetraether bipolar lipids: structures, functions and applications. Biochimie 91:711–717CrossRefGoogle Scholar
  19. Jäger D, Förstner KU, Sharma CM et al (2014) Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis. BMC Genom 15:684. CrossRefGoogle Scholar
  20. Jain S, Caforio A, Driessen AJM (2014) Biosynthesis of archaeal membrane ether lipids. Front Microbiol 5:641. CrossRefGoogle Scholar
  21. Jiang S-Y, Li H, Tang J-J et al (2018) Discovery of a potent HMG-CoA reductase degrader that eliminates statin-induced reductase accumulation and lowers cholesterol. Nat Commun 9:5138. CrossRefGoogle Scholar
  22. Kawachi T, Rudney H (1970) Solubilization and purification of beta-hydroxy-beta-methylglutaryl coenzyme A reductase from rat liver. Biochemistry 9:1700–1705CrossRefGoogle Scholar
  23. Kim D-Y, Stauffacher CV, Rodwell VW (2000) Engineering of Sulfolobus solfataricus HMG-CoA reductase to a form whose activity is regulated by phosphorylation and dephosphorylation. Biochemistry 39:2269–2275. CrossRefGoogle Scholar
  24. Koga Y (2014) From promiscuity to the lipid divide: on the evolution of distinct membranes in archaea and bacteria. J Mol Evol 78:234–242. CrossRefGoogle Scholar
  25. Krishnan L, Sprott GD (2008) Archaeosome adjuvants: immunological capabilities and mechanism(s) of action. Vaccine 26:2043–2055. CrossRefGoogle Scholar
  26. Kudoh T, Park CS, Lefurgy ST et al (2010) Mevalonate analogues as substrates of enzymes in the isoprenoid biosynthetic pathway of Streptococcus pneumoniae. Bioorg Med Chem 18:1124–1134. CrossRefGoogle Scholar
  27. Kung SH, Lund S, Murarka A et al (2018) Approaches and recent developments for the commercial production of semi-synthetic artemisinin. Front Plant Sci 9:87. CrossRefGoogle Scholar
  28. Liu C-L, Tian T, Alonso-Gutierrez J et al (2018) Renewable production of high density jet fuel precursor sesquiterpenes from Escherichia coli. Biotechnol Biofuels 11:285. CrossRefGoogle Scholar
  29. Lyu Z, Jain R, Smith P et al (2016) Engineering the autotroph Methanococcus maripaludis for geraniol production. ACS Synth Biol 5:577–581. CrossRefGoogle Scholar
  30. Matsumi R, Manabe K, Fukui T et al (2007) Disruption of a sugar transporter gene cluster in a hyperthermophilic archaeon using a host-marker system based on antibiotic resistance. J Bacteriol 189:2683–2691. CrossRefGoogle Scholar
  31. Matsumi R, Atomi H, Driessen AJM, van der Oost J (2011) Isoprenoid biosynthesis in Archaea—biochemical and evolutionary implications. Res Microbiol 162:39–52. CrossRefGoogle Scholar
  32. Miziorko HM (2011) Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys 505:131–143. CrossRefGoogle Scholar
  33. Nishimura H, Azami Y, Miyagawa M et al (2013) Biochemical evidence supporting the presence of the classical mevalonate pathway in the thermoacidophilic archaeon Sulfolobus solfataricus. J Biochem 153:415–420. CrossRefGoogle Scholar
  34. Patel GB, Chen W (2005) Archaeosome immunostimulatory vaccine delivery system. Curr Drug Deliv 2:407–421CrossRefGoogle Scholar
  35. Patel GB, Sprott GD (1999) Archaeobacterial ether lipid liposomes (archaeosomes) as novel vaccine and drug delivery systems. Crit Rev Biotechnol 19:317–357. CrossRefGoogle Scholar
  36. Rossoni L, Hall SJ, Eastham G et al (2015) The putative mevalonate diphosphate decarboxylase from Picrophilus torridus is in reality a mevalonate-3-Kinase with high potential for bioproduction of isobutene. Appl Environ Microbiol 81:2625–2634. CrossRefGoogle Scholar
  37. Santangelo TJ, Cubonová L, James CL, Reeve JN (2007) TFB1 or TFB2 is sufficient for Thermococcus kodakaraensis viability and for basal transcription in vitro. J Mol Biol 367:344–357. CrossRefGoogle Scholar
  38. Santangelo TJ, Cubonová L, Reeve JN (2008) Shuttle vector expression in Thermococcus kodakaraensis: contributions of cis elements to protein synthesis in a hyperthermophilic archaeon. Appl Environ Microbiol 74:3099–3104. CrossRefGoogle Scholar
  39. Santangelo TJ, Cubonová L, Reeve JN (2010) Thermococcus kodakarensis genetics: TK1827-encoded beta-glycosidase, new positive-selection protocol, and targeted and repetitive deletion technology. Appl Environ Microbiol 76:1044–1052. CrossRefGoogle Scholar
  40. Vinokur JM, Korman TP, Cao Z, Bowie JU (2014) Evidence of a novel mevalonate pathway in archaea. Biochemistry 53:4161–4168. CrossRefGoogle Scholar
  41. Vinokur JM, Korman TP, Sawaya MR et al (2015) Structural analysis of mevalonate-3-kinase provides insight into the mechanisms of isoprenoid pathway decarboxylases. Protein Sci 24:212–220. CrossRefGoogle Scholar
  42. Vinokur JM, Cummins MC, Korman TP, Bowie JU (2016) An adaptation to life in acid through a novel mevalonate pathway. Sci Rep 6:39737. CrossRefGoogle Scholar
  43. Vögeli B, Engilberge S, Girard E et al (2018) Archaeal acetoacetyl-CoA thiolase/HMG-CoA synthase complex channels the intermediate via a fused CoA-binding site. Proc Natl Acad Sci 115:3380–3385. CrossRefGoogle Scholar
  44. Yamauchi N (2010) The pathway of leucine to mevalonate in halophilic archaea: efficient incorporation of leucine into isoprenoidal lipid with the involvement of isovaleryl-CoA dehydrogenase in Halobacterium salinarum. Biosci Biotechnol Biochem 74:443–446. CrossRefGoogle Scholar
  45. Yamauchi N, Tanoue R (2017) Deuterium incorporation experiments from (3 R)- and (3 S)-[3-2H]leucine into characteristic isoprenoidal lipid-core of halophilic archaea suggests the involvement of isovaleryl-CoA dehydrogenase. Biosci Biotechnol Biochem 81:2062–2070. CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Geraldy L. S. Liman
    • 1
  • Tyler Hulko
    • 1
  • Hallie P. Febvre
    • 1
  • Aaron C. Brachfeld
    • 1
  • Thomas J. Santangelo
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyColorado State UniversityFort CollinsUSA

Personalised recommendations