Abstract
Chott El Jerid is the largest hypersaline ephemeral lake in southern Tunisian Sahara desert and is one of the biggest depressions at the North of Africa. This study aimed to investigate the diversity and abundance of microbial communities inhabiting Chott El Jerid during wet season (when it was flooded), using molecular methods [Illumina Miseq sequencing, DGGE and qPCR (qPCR)]. 16S rRNA gene analyses revealed that bacterial community was dominated by Proteobacteria (especially Ralstonia species), followed by Firmicutes, Bacteroidetes, Cyanobacteria, Actinobacteria and Verrucomicrobia. The results obtained using prokaryotic universal primers showed low relative abundance of Archaea dominated by few OTUs related to Methanosarcinaceae and Methanomassiliicoccaceae families and the presence of sulfate-reducing Archaea affiliated with Archaeoglobus. However, the results obtained using Archaea-specific primers showed that archaeal community was mainly composed of aerobic Halobacteria (especially Halorubrum species) and anaerobic members of Methanomicrobia. These results also provided evidence for the presence of members of the genus Halohasta in this environment. qPCR results revealed that Archaea were more abundant in studied samples than Bacteria. The sulfate-reducing Bacteria were also found abundant (~ one-third of the bacterial community) and outnumbered methanogens, suggesting their potential important role in this sulfate-rich and hypersaline ecosystem.





Similar content being viewed by others
References
Abed RMM, de Beer D, Stief P (2015) Functional-structural analysis of nitrogen-cycle bacteria in a hypersaline mat from the Omani Desert. Geomicrobiol J 32:119–129. https://doi.org/10.1080/01490451.2014.932033
Ben Abdallah M, Karray F, Mhiri N et al (2015) Characterization of Sporohalobacter salinus sp. nov., an anaerobic, halophilic, fermentative bacterium isolated from a hypersaline lake. Int J Syst Evol Microbiol 65:543–548. https://doi.org/10.1099/ijs.0.066845-0
Ben Abdallah M, Karray F, Mhiri N et al (2016) Prokaryotic diversity in a Tunisian hypersaline lake, Chott El Jerid. Extremophiles 20:125–138. https://doi.org/10.1007/s00792-015-0805-7
Boujelben I, Gomariz M, Martínez-García M et al (2012) Spatial and seasonal prokaryotic community dynamics in ponds of increasing salinity of Sfax solar saltern in Tunisia. Anton van Leeuw 101:845–857. https://doi.org/10.1007/s10482-012-9701-7
Cao B, Nagarajan K, Loh KC (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85:207–228. https://doi.org/10.1007/s00253-009-2192-4
Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303
Demergasso C, Escudero L, Casamayor EO et al (2008) Novelty and spatio-temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12:491–504. https://doi.org/10.1007/s00792-008-0153-y
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461
Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381
El Hidri D, Guesmi A, Najjari A et al (2013) Cultivation-dependant assessment, diversity, and ecology of haloalkaliphilic bacteria in arid saline systems of southern Tunisia. Biomed Res Int 2013:1–15. https://doi.org/10.1155/2013/648141
Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
Foti M, Sorokin DY, Lomans B et al (2007) Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl Environ Microbiol 73:2093–2100. https://doi.org/10.1128/AEM.02622-06
Gales G, Tsesmetzis N, Neria I et al (2016) Preservation of ancestral Cretaceous microflora recovered from a hypersaline oil reservoir. Sci Rep 6:22960. https://doi.org/10.1038/srep22960
García-Maldonado JQ, Bebout BM, Everroad RC, López-Cortés A (2015) Evidence of novel phylogenetic lineages of methanogenic archaea from hypersaline microbial mats. Microb Ecol 69:106–117. https://doi.org/10.1007/s00248-014-0473-7
Goris J, De Vos P, Coenye T et al (2001) Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend. Int J Syst Evol Microbiol 51:1773–1782. https://doi.org/10.1099/00207713-51-5-1773
Gueddari M, Monnin C, Perret D et al (1983) Geochemistry of brines of the Chott El Jerid in southern Tunesia—application of Pitzer’s equations. Chem Geol 39:165–178. https://doi.org/10.1016/0009-2541(83)90078-5
Hedi A, Fardeau ML, Sadfi N et al (2009) Characterization of Halanaerobaculum tunisiense gen. nov., sp. nov., a new halophilic fermentative, strictly anaerobic bacterium isolated from a hypersaline lake in Tunisia. Extremophiles 13:313–319. https://doi.org/10.1007/s00792-008-0218-y
Jakobsen TF, Kjeldsen KU, Ingvorsen K (2006) Desulfohalobium utahense sp. nov., a moderately halophilic, sulfate-reducing bacterium isolated from Great Salt Lake. Int J Syst Evol Microbiol 56:2063–2069. https://doi.org/10.1099/ijs.0.64323-0
Kbir-Ariguib N, Chehimi DBH, Zayani L (2001) Treatment of Tunisian salt lakes using solubility phase diagrams. Pure Appl Chem 73:761–770. https://doi.org/10.1351/pac200173050761
Kharroub K, Quesada T, Ferrer R et al (2006) Halorubrum ezzemoulense sp. nov., a halophilic archaeon isolated from Ezzemoul sabkha, Algeria. Int J Syst Evol Microbiol 56:1583–1588. https://doi.org/10.1099/ijs.0.64272-0
Kim TJ, Lee EY, Kim YJ et al (2003) Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A-12. World J Microbiol Biotechnol 19:411–417. https://doi.org/10.1023/A:1023998719787
Kleinsteuber S, Riis V, Fetzer I et al (2006) Population dynamics within a microbial consortium during growth on diesel fuel in saline environments. Appl Environ Microbiol 72:3531–3542. https://doi.org/10.1128/AEM.72.5.3531-3542.2006
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis Version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054
Lozupone CA, Knight R (2008) Species divergence and the measurement of microbial diversity. FEMS Microbiol Rev 32:557–578. https://doi.org/10.1111/j.1574-6976.2008.00111.x
Makhdoumi-Kakhki A, Amoozegar MA, Kazemi B et al (2012) Prokaryotic diversity in Aran-Bidgol salt lake, the largest hypersaline playa in Iran. Microbes Environ 27:87–93. https://doi.org/10.1264/jsme2.ME11267
Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83. https://doi.org/10.1007/s007920100184
Mezghani M, Alazard D, Karray F et al (2012) Halanaerobacter jeridensis sp. nov., isolated from a hypersaline lake. Int J Syst Evol Microbiol 62:1970–1973. https://doi.org/10.1099/ijs.0.036301-0
Mouné S, Caumette P, Matheron R, Willison JC (2003) Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns. FEMS Microbiol Ecol 44:117–130. https://doi.org/10.1016/S0168-6496(03)00017-5
Najjari A, Elshahed MS, Cherif A, Youssef NH (2015) Patterns and determinants of halophilic archaea (Class halobacteria) diversity in tunisian endorheic salt lakes and sebkhet systems. Appl Environ Microbiol 81:4432–4441. https://doi.org/10.1128/AEM.01097-15
Ollivier B, Hatchikian CE, Prensier G et al (1991) Desulfohalobium retbaense gen. nov., sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal. Int J Syst Bacteriol 41:74–81. https://doi.org/10.1099/00207713-41-4-595
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Shannon CE, Weaver W (1949) The mathematical theory of communication. The University of Illinois Press, Urbana, pp 1–117
Simpson EH (1949) Measurement of diversity. Nature 163:688. https://doi.org/10.1038/163688a0
Sørensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71:7352–7365. https://doi.org/10.1128/AEM.71.11.7352-7365.2005
Sørensen KB, Řeháková K, Zapomělová E, Oren A (2009) Distribution of benthic phototrophs, sulfate reducers, and methanogens in two adjacent saltern evaporation ponds in Eilat, Israel. Aquat Microb Ecol 56:275–284. https://doi.org/10.3354/ame01307
Sorokin DY, Abbas B, Geleijnse M et al (2015) Methanogenesis at extremely haloalkaline conditions in the soda lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiol Ecol 91:1–12. https://doi.org/10.1093/femsec/fiv016
Sorokin DY, Makarova KS, Abbas B et al (2017) Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat Microbiol 2:1–11. https://doi.org/10.1038/nmicrobiol.2017.81
Steinsbu BO, Thorseth IH, Nakagawa S et al (2010) Archaeoglobus sulfaticallidus sp. nov., a thermophilic and facultatively lithoautotrophic sulfate-reducer isolated from black rust exposed to hot ridge flank crustal fluids. Int J Syst Evol Microbiol 60:2745–2752. https://doi.org/10.1099/ijs.0.016105-0
Stivaletta N, Barbieri R (2009) Endolithic microorganisms from spring mound evaporite deposits (southern Tunisia). J Arid Environ 73:33–39. https://doi.org/10.1016/j.jaridenv.2008.09.024
Stivaletta N, Barbieri R, Picard C, Bosco M (2009) Astrobiological significance of the sabkha life and environments of southern Tunisia. Planet Space Sci 57:597–605. https://doi.org/10.1016/j.pss.2008.10.002
Sun DL, Jiang X, Wu QL, Zhou NY (2013) Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl Environ Microbiol 79:5962–5969. https://doi.org/10.1128/AEM.01282-13
Swan BK, Ehrhardt CJ, Reifel KM et al (2010) Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea. Appl Environ Microbiol 76:757–768. https://doi.org/10.1128/AEM.02409-09
Takahashi S, Tomita J, Nishioka K et al (2014) Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS One 9:e105592. https://doi.org/10.1371/journal.pone.0105592
Tkavc R, Gostinčar C, Turk M et al (2011) Bacterial communities in the “petola” microbial mat from the Sečovlje salterns (Slovenia). FEMS Microbiol Ecol 75:48–62. https://doi.org/10.1111/j.1574-6941.2010.00985.x
Valenzuela-Encinas C, Neria-González I, Alcántara-Hernández RJ et al (2009) Changes in the bacterial populations of the highly alkaline saline soil of the former lake Texcoco (Mexico) following flooding. Extremophiles 13:609–621. https://doi.org/10.1007/s00792-009-0244-4
Ventosa A, Mellado E, Sanchez-Porro C, Marquez MC (2008) Halophilic and halotolerant micro-organisms from soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Soil biology, vol 13. Springer, Berlin, pp 87–115. https://doi.org/10.1007/978-3-540-74231-9_5
Zhong ZP, Liu Y, Miao LL et al (2016) Prokaryotic community structure driven by salinity and ionic concentrations in plateau lakes of the Tibetan plateau. Appl Environ Microbiol 82:1846–1858. https://doi.org/10.1128/AEM.03332-15
Acknowledgements
MBA was supported by the Tunisian Ministry of Higher Education, Scientific Research and Technology fellowship. This work was published with the support of AIRD (JEAI HALOBIOTECH project “Traitement anaérobie des effluents industriels salins et hypersalins par des bioréacteurs membranaires”).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Additional information
Communicated by A. Oren.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Ben Abdallah, M., Karray, F., Kallel, N. et al. Abundance and diversity of prokaryotes in ephemeral hypersaline lake Chott El Jerid using Illumina Miseq sequencing, DGGE and qPCR assays. Extremophiles 22, 811–823 (2018). https://doi.org/10.1007/s00792-018-1040-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00792-018-1040-9


