Skip to main content

Life from the ashes: survival of dry bacterial spores after very high temperature exposure

Abstract

We found that spores of Bacillus amyloliquefaciens rank amongst the most resistant to high temperatures with a maximum dry heat tolerance determined at 420 °C. We found that this extreme heat resistance was also maintained after several generations suggesting that the DNA was able to replicate after exposure to these temperatures. Nonetheless, amplifying the bacterial DNA using BOXA1R and (GTG)5 primers was unsuccessful immediately after extreme heating, but was successful after incubation of the heated then cooled spores. Moreover, enzymes such as amylases and proteases were active directly after heating and spore regeneration, indicating that DNA coding for these enzymes were not degraded at these temperatures. Our results suggest that extensive DNA damage may occur in spores of B. amyloliquefaciens directly after an extreme heat shock. However, the successful germination of spores after inoculation and incubation indicates that these spores could have a very effective DNA repair mechanism, most likely protein-based, able to function after exposure to temperatures up to 420 °C. Therefore, we propose that B. amyloliquefaciens is one of the most heat resistant life forms known to science and can be used as a model organism for studying heat resistance and DNA repair. Furthermore, the extremely high temperature resistivity of these spores has exceptional consequences for general methodology, such as the use of dry heat sterilization and, therefore, virtually all studies in the broad area of high temperature biology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aanniz T, Ouadghiri M, Melloul M, Swings J, Elfahime E, Ibijbijen J, Ismaili M, Amar M (2015) Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils. Braz J Microbiol 46:443–453

    Article  PubMed  PubMed Central  Google Scholar 

  2. Adiguzel A, Ozkan H, Baris O, Inan K, Gulluce M, Sahin F (2009) Identification and characterization of thermophilic bacteria isolated from hot springs in Turkey. J Microbiol Methods 79:321–328

    Article  PubMed  CAS  Google Scholar 

  3. Agostini HJ, Carroll JD, Minton KW (1996) Identification and characterization of gvrA, a DNA repair gene of Deinococcus radiodurans. J Bacteriol 178:6759–6765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Alonso CH, Cardenas PP, Sanchez H, Hejna J, Suzuki Y, Takeyasu K (2013) Early steps of double-strand break repair in Bacillus subtilis. DNA Repair 12:162–176

    Article  PubMed  CAS  Google Scholar 

  5. Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  6. Ananthanarayan R, Paniker CKJ (2006) Textbook of microbiology, 7th edn. Orient Longman Private Ltd., Chennai

    Google Scholar 

  7. Anthierens T, Ragaert P, Verbrugge S, Ouchchen A, De Geest BG, Noseda B, Mertens J, Beladjal L, De Cuyper D, Dierickx W, Du Prez F, Devlieghere F (2011) Use of endospore-forming bacteria as an active oxygen scavenger in plastic packaging materials. Innov Food Sci Emerg Technol 12:594–599

    Article  CAS  Google Scholar 

  8. Belduz AO, Dulger S, Demirbag Z (2003) Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol 53:1315–1320

    Article  PubMed  CAS  Google Scholar 

  9. Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BFF, Rapp BA, Wheeler DL (1999) GenBank. Nucleic Acids Res 27:12–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Birnboim H, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bond WW, Favero MS (1975) Thermal profile of a Bacillus species (ATCC 27380) extremely resistant to dry heat. Appl Microbiol 29:859

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Bond WW, Favero MS (1977) Bacillus xerothermodurans sp. nov., a species forming endospores extremely resistant to dry heat. Int J Syst Bacteriol 27:157–160

    Article  Google Scholar 

  13. Chandor A, Berteau O, Douki T, Gasparutto D, Sanakis Y, Ollagnier-de-Choudens S, Atta M, Fontecave M (2006) Dinucleotide spore photoproduct, a minimal substrate of the DNA repair spore photoproduct lyase enzyme from Bacillus subtilis. J Biol Chem 281:26922–26931

    Article  PubMed  CAS  Google Scholar 

  14. Chun J, Bae KS (2000) Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie Van Leeuwenhoek 78:123–127

    Article  PubMed  CAS  Google Scholar 

  15. Ciera L, Beladjal L, Almeras X, Gheysens T, Nierstrasz V, Van Langenhove L, Mertens J (2014a) Resistance of Bacillus amyloliquefaciens spores to melt extrusion process conditions. Fibres Text East Eur 22(2–104):102–107

    Google Scholar 

  16. Ciera L, Beladjal L, Almeras X, Gheysens T, Van Landuyt L, Mertens J, Nierstrasz V, Van Langenhove L (2014b) Morphological and material properties of polyethylene terephthalate (PET) fibres with spores incorporated. Fibres Text East Eur 22(4–106):29–36

    CAS  Google Scholar 

  17. Coleman W, Setlow P (2009) Analysis of damage due to moist heat treatment of spores of Bacillus subtilis. J Appl Microbiol 106:1600–1607

    Article  PubMed  CAS  Google Scholar 

  18. Coleman WH, Chen D, Li Y, Cowan AE, Setlow P (2007) How moist heat kills spores of Bacillus subtilis. J Bacteriol 189:8458–8466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Coroller L, Leguérinel I, Mafart P (2001) Effect of water activities of heating and recovery media on apparent heat resistance of Bacillus cereus spores. Appl Environ Microbiol 67:317–322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cortezzo DE, Setlow P (2005) Analysis of factors that influence the sensitivity of spores of Bacillus subtilis to DNA damaging chemicals. J Appl Microbiol 98:606–617

    Article  PubMed  CAS  Google Scholar 

  21. Dulger S, Demirbag Z, Belduz AO (2004) Anoxybacillus ayderensis sp. nov. and Anoxybacillus kestanbolensis sp. nov. Inter J Syst Evol Microbiol 54:1499–1503

    Article  CAS  Google Scholar 

  22. Espitia LDCH, Caley C, Bagyan I, Setlow P (2002) Base-change mutations induced by various treatments of Bacillus subtilis spores with and without DNA protective small, acid-soluble spore proteins. Mutat Res Fund Mol Mech Mutagen 503:77–84

    Article  Google Scholar 

  23. Gevers D, Huys G, Swings J (2001) Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205:31–36

    Article  PubMed  CAS  Google Scholar 

  24. Gurney TR, Quesnel LB (1980) Thermal activation and dry-heat inactivation of spores of Bacillus subtilis MD2 and Bacillus subtilis var. niger. J Appl Bacteriol 48:231–247

    Article  PubMed  CAS  Google Scholar 

  25. Harley JP, Prescott LM (2002) Laboratory exercises in microbiology, 5th edn. The McGraw-Hill Compagnies, New York

    Google Scholar 

  26. Karni M, Zidon D, Polak P, Zalevsky Z, Shefi O (2013) Thermal degradation of DNA. DNA Cell Biol 32:298–301

    Article  PubMed  CAS  Google Scholar 

  27. Laroche C, Gervais P (2003) Unexpected thermal destruction of dried, glass bead-immobilized microorganisms as a function of water activity. Appl Environ Microbiol 69:3015–3019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lee S, Sim S (2006) Increased heat resistance of Geobacillus stearothermophilus spores heat-shocked during sporulation. J Microbiol Biotechnol 16:633–636

    CAS  Google Scholar 

  29. Lenhart JS, Schroeder JW, Walsh BW, Simmons LA (2012) DNA repair and genome maintenance in Bacillus subtilis. Microbiol Mol Biol Rev 76:530–564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lenhart JS, Pillon MC, Guarné A, Biteen J, Simmons LA (2016) Mismatch repair in Gram-positive bacteria. Res Microbiol 167:4–12

    Article  PubMed  CAS  Google Scholar 

  31. Markkanen E (2017) Not breathing is not an option: how to deal with oxidative DNA damage. DNA Repair 59:82–105

    Article  PubMed  CAS  Google Scholar 

  32. Mertens J, Beladjal L, Alcantara A, Fougnies L, Van Der Straeten D, Clegg J (2008) Survival of dried eukaryotes (anhydrobiotes) after exposure to very high temperatures. Biol J Linn Soc 93:15–22

    Article  Google Scholar 

  33. Michel B, Boubakri H, Baharoglu Z, LeMasson M, Lestini R (2007) Recombination proteins and rescue of arrested replication forks. DNA Repair 6:967–980

    Article  PubMed  CAS  Google Scholar 

  34. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Pitcher D, Saunders N, Owen R (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156

    Article  CAS  Google Scholar 

  36. Rameshkumar N, Nair S (2009) Isolation and molecular characterization of genetically diverse antagonistic, diazotrophic red-pigmented vibrios from different mangrove rhizospheres. FEMS Microbiol Ecol 67:455–467

    Article  PubMed  CAS  Google Scholar 

  37. Sadfi-Zouaoui N, Essghaier B, Hajlaoui MR, Fardeau ML, Cayaol JL, Ollivier B, Boudabous A (2008) Ability of moderately halophilic bacteria to control grey mould disease on tomato fruits. J Phytopathol 156:42–52

    CAS  Google Scholar 

  38. Setlow P (2003) Spore germination. Curr Opin Microbiol 6:550–556

    Article  PubMed  CAS  Google Scholar 

  39. Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101:514–525

    Article  PubMed  CAS  Google Scholar 

  40. Setlow P (2014) Spore resistance properties. Microbiol Spect 2(5):201–215

    Google Scholar 

  41. Setlow B, Setlow P (1995) Small, acid-soluble proteins bound to DNA protect Bacillus subtilis spores from killing by dry heat. Appl Environ Microbiol 61:2787–2790

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Setlow B, Setlow P (1996) Role of DNA repair in Bacillus subtilis spore resistance. J Bacteriol 178(12):3486–3495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Setlow B, Parish S, Zhang P, Li YQ, Neely WC, Setlow P (2014) Mechanism of killing of spores of Bacillus anthracis in a high-temperature gas environment, and analysis of DNA damage generated by various decontamination treatments of spores of Bacillus anthracis, Bacillus subtilis and Bacillus thuringiensis. J Appl Microbiol 116:805–814

    Article  PubMed  CAS  Google Scholar 

  44. Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  45. Zhou W, Orr MW, Jian G, Watt SK, Lee VT, Zachariah MR (2015) Inactivation of bacterial spores subjected to sub-second thermal stress. Chem Eng J 279:578–588

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lynda Beladjal.

Additional information

Communicated by H. Atomi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beladjal, L., Gheysens, T., Clegg, J.S. et al. Life from the ashes: survival of dry bacterial spores after very high temperature exposure. Extremophiles 22, 751–759 (2018). https://doi.org/10.1007/s00792-018-1035-6

Download citation

Keywords

  • Heat resistance
  • Bacillus spores
  • Extremophiles
  • DNA damage-repair