Life from the ashes: survival of dry bacterial spores after very high temperature exposure

  • Lynda Beladjal
  • Tom Gheysens
  • James S. Clegg
  • Mohamed Amar
  • Johan Mertens
Original Paper

Abstract

We found that spores of Bacillus amyloliquefaciens rank amongst the most resistant to high temperatures with a maximum dry heat tolerance determined at 420 °C. We found that this extreme heat resistance was also maintained after several generations suggesting that the DNA was able to replicate after exposure to these temperatures. Nonetheless, amplifying the bacterial DNA using BOXA1R and (GTG)5 primers was unsuccessful immediately after extreme heating, but was successful after incubation of the heated then cooled spores. Moreover, enzymes such as amylases and proteases were active directly after heating and spore regeneration, indicating that DNA coding for these enzymes were not degraded at these temperatures. Our results suggest that extensive DNA damage may occur in spores of B. amyloliquefaciens directly after an extreme heat shock. However, the successful germination of spores after inoculation and incubation indicates that these spores could have a very effective DNA repair mechanism, most likely protein-based, able to function after exposure to temperatures up to 420 °C. Therefore, we propose that B. amyloliquefaciens is one of the most heat resistant life forms known to science and can be used as a model organism for studying heat resistance and DNA repair. Furthermore, the extremely high temperature resistivity of these spores has exceptional consequences for general methodology, such as the use of dry heat sterilization and, therefore, virtually all studies in the broad area of high temperature biology.

Keywords

Heat resistance Bacillus spores Extremophiles DNA damage-repair 

References

  1. Aanniz T, Ouadghiri M, Melloul M, Swings J, Elfahime E, Ibijbijen J, Ismaili M, Amar M (2015) Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils. Braz J Microbiol 46:443–453CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adiguzel A, Ozkan H, Baris O, Inan K, Gulluce M, Sahin F (2009) Identification and characterization of thermophilic bacteria isolated from hot springs in Turkey. J Microbiol Methods 79:321–328CrossRefPubMedGoogle Scholar
  3. Agostini HJ, Carroll JD, Minton KW (1996) Identification and characterization of gvrA, a DNA repair gene of Deinococcus radiodurans. J Bacteriol 178:6759–6765CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alonso CH, Cardenas PP, Sanchez H, Hejna J, Suzuki Y, Takeyasu K (2013) Early steps of double-strand break repair in Bacillus subtilis. DNA Repair 12:162–176CrossRefPubMedGoogle Scholar
  5. Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  6. Ananthanarayan R, Paniker CKJ (2006) Textbook of microbiology, 7th edn. Orient Longman Private Ltd., ChennaiGoogle Scholar
  7. Anthierens T, Ragaert P, Verbrugge S, Ouchchen A, De Geest BG, Noseda B, Mertens J, Beladjal L, De Cuyper D, Dierickx W, Du Prez F, Devlieghere F (2011) Use of endospore-forming bacteria as an active oxygen scavenger in plastic packaging materials. Innov Food Sci Emerg Technol 12:594–599CrossRefGoogle Scholar
  8. Belduz AO, Dulger S, Demirbag Z (2003) Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol 53:1315–1320CrossRefPubMedGoogle Scholar
  9. Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BFF, Rapp BA, Wheeler DL (1999) GenBank. Nucleic Acids Res 27:12–17CrossRefPubMedPubMedCentralGoogle Scholar
  10. Birnboim H, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bond WW, Favero MS (1975) Thermal profile of a Bacillus species (ATCC 27380) extremely resistant to dry heat. Appl Microbiol 29:859PubMedPubMedCentralGoogle Scholar
  12. Bond WW, Favero MS (1977) Bacillus xerothermodurans sp. nov., a species forming endospores extremely resistant to dry heat. Int J Syst Bacteriol 27:157–160CrossRefGoogle Scholar
  13. Chandor A, Berteau O, Douki T, Gasparutto D, Sanakis Y, Ollagnier-de-Choudens S, Atta M, Fontecave M (2006) Dinucleotide spore photoproduct, a minimal substrate of the DNA repair spore photoproduct lyase enzyme from Bacillus subtilis. J Biol Chem 281:26922–26931CrossRefPubMedGoogle Scholar
  14. Chun J, Bae KS (2000) Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie Van Leeuwenhoek 78:123–127CrossRefPubMedGoogle Scholar
  15. Ciera L, Beladjal L, Almeras X, Gheysens T, Nierstrasz V, Van Langenhove L, Mertens J (2014a) Resistance of Bacillus amyloliquefaciens spores to melt extrusion process conditions. Fibres Text East Eur 22(2–104):102–107Google Scholar
  16. Ciera L, Beladjal L, Almeras X, Gheysens T, Van Landuyt L, Mertens J, Nierstrasz V, Van Langenhove L (2014b) Morphological and material properties of polyethylene terephthalate (PET) fibres with spores incorporated. Fibres Text East Eur 22(4–106):29–36Google Scholar
  17. Coleman W, Setlow P (2009) Analysis of damage due to moist heat treatment of spores of Bacillus subtilis. J Appl Microbiol 106:1600–1607CrossRefPubMedGoogle Scholar
  18. Coleman WH, Chen D, Li Y, Cowan AE, Setlow P (2007) How moist heat kills spores of Bacillus subtilis. J Bacteriol 189:8458–8466CrossRefPubMedPubMedCentralGoogle Scholar
  19. Coroller L, Leguérinel I, Mafart P (2001) Effect of water activities of heating and recovery media on apparent heat resistance of Bacillus cereus spores. Appl Environ Microbiol 67:317–322CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cortezzo DE, Setlow P (2005) Analysis of factors that influence the sensitivity of spores of Bacillus subtilis to DNA damaging chemicals. J Appl Microbiol 98:606–617CrossRefPubMedGoogle Scholar
  21. Dulger S, Demirbag Z, Belduz AO (2004) Anoxybacillus ayderensis sp. nov. and Anoxybacillus kestanbolensis sp. nov. Inter J Syst Evol Microbiol 54:1499–1503CrossRefGoogle Scholar
  22. Espitia LDCH, Caley C, Bagyan I, Setlow P (2002) Base-change mutations induced by various treatments of Bacillus subtilis spores with and without DNA protective small, acid-soluble spore proteins. Mutat Res Fund Mol Mech Mutagen 503:77–84CrossRefGoogle Scholar
  23. Gevers D, Huys G, Swings J (2001) Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205:31–36CrossRefPubMedGoogle Scholar
  24. Gurney TR, Quesnel LB (1980) Thermal activation and dry-heat inactivation of spores of Bacillus subtilis MD2 and Bacillus subtilis var. niger. J Appl Bacteriol 48:231–247CrossRefPubMedGoogle Scholar
  25. Harley JP, Prescott LM (2002) Laboratory exercises in microbiology, 5th edn. The McGraw-Hill Compagnies, New YorkGoogle Scholar
  26. Karni M, Zidon D, Polak P, Zalevsky Z, Shefi O (2013) Thermal degradation of DNA. DNA Cell Biol 32:298–301CrossRefPubMedGoogle Scholar
  27. Laroche C, Gervais P (2003) Unexpected thermal destruction of dried, glass bead-immobilized microorganisms as a function of water activity. Appl Environ Microbiol 69:3015–3019CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lee S, Sim S (2006) Increased heat resistance of Geobacillus stearothermophilus spores heat-shocked during sporulation. J Microbiol Biotechnol 16:633–636Google Scholar
  29. Lenhart JS, Schroeder JW, Walsh BW, Simmons LA (2012) DNA repair and genome maintenance in Bacillus subtilis. Microbiol Mol Biol Rev 76:530–564CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lenhart JS, Pillon MC, Guarné A, Biteen J, Simmons LA (2016) Mismatch repair in Gram-positive bacteria. Res Microbiol 167:4–12CrossRefPubMedGoogle Scholar
  31. Markkanen E (2017) Not breathing is not an option: how to deal with oxidative DNA damage. DNA Repair 59:82–105CrossRefPubMedGoogle Scholar
  32. Mertens J, Beladjal L, Alcantara A, Fougnies L, Van Der Straeten D, Clegg J (2008) Survival of dried eukaryotes (anhydrobiotes) after exposure to very high temperatures. Biol J Linn Soc 93:15–22CrossRefGoogle Scholar
  33. Michel B, Boubakri H, Baharoglu Z, LeMasson M, Lestini R (2007) Recombination proteins and rescue of arrested replication forks. DNA Repair 6:967–980CrossRefPubMedGoogle Scholar
  34. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pitcher D, Saunders N, Owen R (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156CrossRefGoogle Scholar
  36. Rameshkumar N, Nair S (2009) Isolation and molecular characterization of genetically diverse antagonistic, diazotrophic red-pigmented vibrios from different mangrove rhizospheres. FEMS Microbiol Ecol 67:455–467CrossRefPubMedGoogle Scholar
  37. Sadfi-Zouaoui N, Essghaier B, Hajlaoui MR, Fardeau ML, Cayaol JL, Ollivier B, Boudabous A (2008) Ability of moderately halophilic bacteria to control grey mould disease on tomato fruits. J Phytopathol 156:42–52Google Scholar
  38. Setlow P (2003) Spore germination. Curr Opin Microbiol 6:550–556CrossRefPubMedGoogle Scholar
  39. Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101:514–525CrossRefPubMedGoogle Scholar
  40. Setlow P (2014) Spore resistance properties. Microbiol Spect 2(5):201–215Google Scholar
  41. Setlow B, Setlow P (1995) Small, acid-soluble proteins bound to DNA protect Bacillus subtilis spores from killing by dry heat. Appl Environ Microbiol 61:2787–2790PubMedPubMedCentralGoogle Scholar
  42. Setlow B, Setlow P (1996) Role of DNA repair in Bacillus subtilis spore resistance. J Bacteriol 178(12):3486–3495CrossRefPubMedPubMedCentralGoogle Scholar
  43. Setlow B, Parish S, Zhang P, Li YQ, Neely WC, Setlow P (2014) Mechanism of killing of spores of Bacillus anthracis in a high-temperature gas environment, and analysis of DNA damage generated by various decontamination treatments of spores of Bacillus anthracis, Bacillus subtilis and Bacillus thuringiensis. J Appl Microbiol 116:805–814CrossRefPubMedGoogle Scholar
  44. Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40Google Scholar
  45. Zhou W, Orr MW, Jian G, Watt SK, Lee VT, Zachariah MR (2015) Inactivation of bacterial spores subjected to sub-second thermal stress. Chem Eng J 279:578–588CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Terrestrial Ecology Unit, Department of BiologyGhent UniversityGhentBelgium
  2. 2.Department of Organic and Macromolecular ChemistryGhent UniversityGhentBelgium
  3. 3.University of California, Davis, and Bodega Marine LaboratoryBodega BayUSA
  4. 4.Laboratoire de Microbiologie et Biologie MoléculaireCentre National pour la Recherche Scientifique et Technique (LMBM/CNRST)RabatMorocco

Personalised recommendations