Skip to main content
Log in

Production and characterization of exopolysaccharides by Geobacillus thermodenitrificans ArzA-6 and Geobacillus toebii ArzA-8 strains isolated from an Armenian geothermal spring

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The thermal ecosystems, including geothermal springs, are proving to be source of thermophiles able to produce extracellular polysaccharides (EPSs). Among the sixteen thermophilic bacilli isolated from sediment sampled from Arzakan geothermal spring, Armenia, two best EPSs producer strains were identified based on 16S rRNA gene sequence analysis and phenotypic characteristics, and designated as Geobacillus thermodenitrificans ArzA-6 and Geobacillus toebii ArzA-8 strains. EPSs production was investigated under different time, temperature and culture media’s composition. The highest specific EPSs production yield (0.27 g g−1 dry cells and 0.22 g g−1 dry cells for strains G. thermodenitrificans ArzA-6 and G. toebii ArzA-8, respectively) was observed after 24 h when fructose was used as sole carbon source at 65 °C and pH 7.0. Purified EPSs displayed a high molecular mass: 5 × 105 Da for G. thermodenitrificans ArzA-6 and 6 × 105 Da for G. toebii ArzA-8. Chemical composition and structure of the biopolymers, determined by GC–MS, HPAE-PAD and NMR, showed that both the two EPSs are heteropolymers composed by mannose as major monomer unit. Optical rotation values [α] 25 °CD of the two EPSs (2 mg ml−1 H2O) were − 142,135 and − 128,645 for G. thermodenitrificans ArzA-6 and G. toebii ArzA-8, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aliyu H, Lebre P, Blom J, Cowan D, De Maayer P (2016) Phylogenomic re-assessment of the thermophilic genus Geobacillus. Syst Appl Microbiol 39:527–533

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arena A, Gugliandolo C, Stassi G, Pavone B, Iannello D, Bisignano G, Maugeri TL (2009) An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: antiviral activity on immunocompetent cells. Immunol Lett 123:132–137

    Article  PubMed  CAS  Google Scholar 

  • Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Bioch 54:484–489

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Bioch 72:248–254

    Article  CAS  Google Scholar 

  • Caruso C, Rizzo C, Mangano S, Poli A, Di Donato P, Finore I, Nicolaus B, Di Marco G, Michaud L, Lo Giudice A (2018) Production and biotechnological potentialities of extracellular polymeric substances from sponge-associated Antarctic bacteria. Appl Environ Microbiol 84(4):e01624-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Castellane TC, Lemos MV, Lemos EG (2014) Evaluation of the biotechnological potential of Rhizobium tropici strains for exopolysaccharide production. Carbohyd Polym 111:191–197

    Article  CAS  Google Scholar 

  • Cihan AC, Ozcan B, Tekin N, Cokmus C (2011) Geobacillus thermodenitrificans subsp. calidus, subsp. nov., a thermophilic and α-glucosidase producing bacterium isolated from Kizilcahamam, Turkey. J Gen Appl Microbiol 57(2):83–92

    Article  PubMed  CAS  Google Scholar 

  • Coorevits A, Dinsdale A, Halket G, Lebbe L, De Vos P, Van Landschoot A, Logan N (2011) Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly “thermoglucosidasius”); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans and proposal of Anoxybacillus caldiproteolyticus sp. nov. Int J Syst Evol Microbiol 62:1470–1485

    Article  PubMed  CAS  Google Scholar 

  • De Vuyst L, Vanderveken F, Van de Ven S, Degeest B (1998) Production by and isolation of exopolysaccharides from Streptococcus thermophilus grown in a milk medium and evidence for their growth-associated biosynthesis. J Appl Microbiol 84:1059–1068

    Article  PubMed  Google Scholar 

  • Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion genetics and extraction. Carbohyd Polym 87:951–962

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric methods for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Finore I, Orlando P, Di Donato P, Leone L, Nicolaus B, Poli A (2016) Nesterenkonia aurantiaca sp. nov., an alkaliphilic actinobacterium isolated from Antarctica. Int J Syst Evol Microbiol 66:1554–1560

    Article  PubMed  CAS  Google Scholar 

  • Freitas F, Alves VD, Reis MAM (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–398

    Article  PubMed  CAS  Google Scholar 

  • Ghosh T, Chattopadhyay K, Marschall M, Karmakar P, Mandal P, Ray B (2009) Focus on antivirally active sulfated polysaccharides: from structure–activity analysis to clinical evaluation. Glycobiology 19:2–15

    Article  PubMed  CAS  Google Scholar 

  • Guezennec J (2002) Deep-sea hydrothermal vents: a new source of innovative bacterial exopolysaccharides of biotechnological interest. J Ind Microbiol Biotechnol 29:204–208

    Article  PubMed  CAS  Google Scholar 

  • Gugliandolo C, Lentini V, Spano A, Maugeri TL (2010) New bacilli from shallow hydrothermal vents of Panarea Island (Italy) and their biotechnological potential. J Appl Microbiol 112:1102–1112

    Article  CAS  Google Scholar 

  • Gugliandolo C, Spanò A, Lentini V, Arena A, Maugeri TL (2014) Antiviral and immunomodulatory effects of a novel bacterial exopolysaccharide of shallow marine vent origin. J Appl Microbiol 116:1028–1034

    Article  PubMed  CAS  Google Scholar 

  • Gugliandolo C, Spanò A, Maugeri TL, Poli A, Arena A, Nicolaus B (2015) Role of bacterial exopolysaccharides as agents in counteracting immune disorders induced by herpes virus. Microorganisms 3:464–483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kambourova M, Mandeva R, Dimova D, Poli A, Nicolaus B, Tommonaro G (2009) Production and characterization of a microbial glucan, synthesized by Geobacillus tepidamans V264 isolated from Bulgarian hot spring. Carbohyd Polym 77:338–343

    Article  CAS  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  PubMed  CAS  Google Scholar 

  • Kumar AS, Mody KH, Jha B (2007) Bacterial exopolysaccharides—a perception. J Basic Microbiol 47:103–117

    Article  PubMed  CAS  Google Scholar 

  • Lin MH, Yang YL, Chen YP, Hua KF, Lu CP, Sheu F, Lin GH, Tsay SS, Liang SM, Wu SH (2011) A novel exopolysaccharide from the biofilm of Thermus aquaticus YT-1 induces the immune response through Toll-like receptor 2. J Biol Chem 286:17736–17745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manachini PL, Mora D, Nicastro G, Parini C, Stackebrandt E, Pukall R, Fortina MG (2000) Bacillus thermodenitrificans sp. nov., nom. rev. Int J Syst Evol Microbiol 50:1331–1337

    Article  PubMed  CAS  Google Scholar 

  • Manca MC, Lama L, Improta R, Esposito E, Gambacorta A, Nicolaus B (1996) Chemical composition of two exopolysaccharide from Bacillus thermoantarcticus. Appl Environ Microbiol 62:3265–3269

    PubMed  PubMed Central  CAS  Google Scholar 

  • Matou S, Colliec-Jouault S, Galy-Fauroux I, Ratiskol J, Sinquin C, Guezennec J, Fischer AM, Helley D (2005) Effect of an oversulfated exopolysaccharide on angiogenesis induced by fibroblast growth factor-2 or vascular endothelial growth factor in vitro. Biochem Pharmacol 69:751–759

    Article  PubMed  CAS  Google Scholar 

  • Maugeri TL, Gugliandolo C, Caccamo D, Panico A, Lama L, Gambacorta A, Nicolaus B (2002) A halophilic thermotolerant Bacillus isolated from a marine hot spring able to produce a new exopolysaccharide. Biotechnol Lett 24:515–519

    Article  CAS  Google Scholar 

  • Mishra A, Jha B (2013) Microbial exopolysaccharides. In: Rosenberg E et al (eds) The prokaryotes—applied bacteriology and biotechnology. Springer-Verlag, Berlin Heidelberg, pp 179–192

    Google Scholar 

  • Molina IJ, Ruiz-Ruiz C, Quesada E, Bejar V (2013) Biomedical application of exopolysaccharides produced by microorganisms isolated from extreme environments. In: Singh OV (ed) Extremophiles: sustainable resources and biotechnological implications. Wiley, Hoboken, pp 335–355

    Google Scholar 

  • Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51:433–446

    Article  PubMed  CAS  Google Scholar 

  • Nichols MC, Garon S, Bowman JP, Nichols PD, Gibson JAE, Guezennec J (2005) Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb Ecol 49:578–589

    Article  PubMed  CAS  Google Scholar 

  • Nicolaus B, Panico A, Manca MC, Lama L, Gambacorta A, Maugeri TL (2000) A thermophilic Bacillus isolated from an Eolian shallow hydrothermal vent, able to produce exopolysaccharides. Syst Appl Microbiol 23:426–432

    Article  PubMed  CAS  Google Scholar 

  • Nicolaus B, Lama L, Panico A, Schiano Moriello V, Romano I, Gambacorta A (2002) Production and characterization of exopolysaccharides excreted by thermophilic bacteria from shallow, marine hydrothermal vents of Flegrean Areas (Italy). Syst Appl Microbiol 25:319–325

    Article  PubMed  CAS  Google Scholar 

  • Nicolaus B, Anzelmo G, Poli A (2013) Bacterial polymers produced by extremophiles: biosynthesis, characterization, and applications of exopolysaccharides. In: Singh OV (ed) Extremophiles: sustainable resources and biotechnological implications. Wiley, New Jersey, pp 335–355

    Google Scholar 

  • Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and Prospects. Int J Mol Sci 13:14002–14015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pal A, Paul AK (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48:49–64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panosyan H, Birkeland NK (2014) Microbial diversity in an Armenian geothermal spring assessed by molecular and culture-based methods. J Basic Microbiol 54:1240–1250

    Article  PubMed  CAS  Google Scholar 

  • Poli A, Anzelmo G, Nicolaus B (2010) Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar Drugs 8:1779–1802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poli A, Laezza G, Gul-Guven R, Orlando P, Nicolaus B (2011) Geobacillus galactosidasius sp. nov., a new thermophilic galactosidase-producing bacterium isolated from compost. Syst Appl Microbiol 34:419–423

    Article  PubMed  CAS  Google Scholar 

  • Poli A, Finore I, Romano I, Gioiello A, Lama L, Nicolaus B (2017) Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms 5:25

    Article  PubMed Central  CAS  Google Scholar 

  • Radchenkova N, Tomova A, Kambourova M (2011) Biosynthesis of exopolysaccharide produced by Brevibacillus thermoruber 438. Biotechnol Biotechnol Eq 25(4):77–79

    Article  Google Scholar 

  • Radchenkova N, Vassilev S, Panchev I, Anzelmo G, Tomova I, Nicolaus B, Kuncheva M, Petrov K, Kambourova M (2013) Production and properties of two novel exopolysaccharides synthesized by a thermophilic bacterium Aeribacillus pallidus 418. Appl Biochem Biotechnol 171(1):31–43

    Article  PubMed  CAS  Google Scholar 

  • Raveendran S, Palaninathan V, Nagaoka Y, Fukuda T, Iwai S, Higashi T, Mizuki T, Sakamoto Y, Mohanan PV, Maekawa T, Kumar DS (2015) Extremophilic polysaccharide nanoparticles for cancer nanotherapy and evaluation of antioxidant properties. Int J Biol Macromol 76:310–319

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Ruiz C, Srivastava GK, Carranza D, Mata JA, Llamas I, Santamaria M, Quesada E, Molina IJ (2011) An exopolysaccharide produced by the novel halophilic bacterium Halomonas stenophila strain B100 selectively induces apoptosis in human T leukaemia cells. Appl Microbiol Biotechnol 89:345–355

    Article  PubMed  CAS  Google Scholar 

  • Smibert R, Krieg N (1981) General characteristics. In: Gerhardt P, Murray R, Costilow R, Nester E, Wood W, Phillips G (eds) Manual of methods for general bacteriology, 3rd edn. American Society for Microbiology, Washington, DC, pp 7–243

    Google Scholar 

  • Sun S, Zhang Z, Luo Y, Zhong W, Xiao M, Yi W, Yu L, Fu P (2011) Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery. Bioresour Technol 102:6153–6158

    Article  PubMed  CAS  Google Scholar 

  • Sung MH, Kim H, Bae JW, Rhee SK, Jeon CO, Kim K, Kim JJ, Hong SP, Lee SG, Yoon JH, Park YH, Baek DH (2002) Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost. Int J Syst Evol Microbiol 52:2251–2255

    PubMed  CAS  Google Scholar 

  • Sutherland IW (1997) Microbial exopolysaccharides—structural subtleties and their consequences. Pure Appl Chem 69(9):1911–1917

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolfaardt GM, Lawrence JR, Korbe DR (1999) Function of EPS. In: Wingender J, Neu TR, Flemming HC (eds) Microbial extracellular polymeric substances: characterization, structure and function. Springer-Verlag, New York, pp 171–200

    Chapter  Google Scholar 

  • Yildiz SY, Anzelmo G, Ozer T, Radchenkova N, Genc S, Di Donato P, Nicolaus B, Toksoy Oner E, Kambourova M (2014) Brevibacillus themoruber: a promising microbial cell factory for exopolysaccharide production. J Appl Microbiol 116(2):314–324

    Article  CAS  Google Scholar 

  • Zhao S, Cao F, Zhang H, Zhang L, Zhang F, Liang X (2014) Structural characterization and biosorption of exopolysaccharides from Anoxybacillus sp. R4-33 isolated from radioactive radon hot spring. Appl Biochem Biotechnol 172(5):2732–2746

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the FEBS Short Fellowship-2009 H.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hovik Panosyan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by A. Oren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panosyan, H., Di Donato, P., Poli, A. et al. Production and characterization of exopolysaccharides by Geobacillus thermodenitrificans ArzA-6 and Geobacillus toebii ArzA-8 strains isolated from an Armenian geothermal spring. Extremophiles 22, 725–737 (2018). https://doi.org/10.1007/s00792-018-1032-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-018-1032-9

Keywords

Navigation