Skip to main content
Log in

Prokaryotic and eukaryotic community structure affected by the presence of an acid mine drainage from an abandoned gold mine

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The acid mine drainage that originates in the abandoned gold mine in San Luis, Argentina, is released into La Carolina stream. The aim of this study was to determine the influence of this mine drainage on the physicochemical parameters of the area studied and on both prokaryotic and eukaryotic community structure. In addition, specific relationships between microbial taxonomic groups and physicochemical parameters were established. The drainage that flows into La Carolina stream acidifies the stream and increases its sulfate, Zn, Cd and Te concentrations. Microbial analysis showed that prokaryotic community structure is mainly affected by pH values. Actinobacteria and Gammaproteobacteria were abundant in samples characterized by low pH values, while Nitrospirae, Chloroflexi, Deltaproteobacteria, Thaumarchaeota and Euryarchaeota were associated with high concentrations of heavy metals. Otherwise, Alphaproteobacteria was present in samples taken in sunlit areas. Regarding eukaryotic community structure, the sunlight had the greatest impact. Inside the mine, in the absence of light, fungi and protists members were the most abundant microorganisms, while those samples taken in the presence of light displayed algae (green algae and diatoms) as the most abundant ones. After receiving the mine drainage, the stream showed a decrease in the diatom abundance and green algae predominated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amaral-Zettler LA, Zettler ER, Theroux SM, Palacios C, Aguilera A, Amils R (2011) Microbial community structure across the tree of life in the extreme Río Tinto. ISME J 5:42–50

    Article  PubMed  Google Scholar 

  • Auld RR, Myre M, Mykytczuk NC, Leduc LG, Merritt TJ (2013) Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques. J Microbiol Methods 93:108–115

    Article  PubMed  CAS  Google Scholar 

  • Auld RR, Mykytczuk NC, Leduc LG, Merritt TJ (2017) Seasonal variation in an acid mine drainage microbial community. Can J Microbiol 63(2):137–152

    Article  PubMed  CAS  Google Scholar 

  • Bond PL, Smriga SP, Banfield JF (2000) Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66(9):3842–3849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brake SS, Hasiotis ST, Dannelly HK (2004) Diatoms in acid mine drainage and their role in the formation of iron-rich stromatolites. Geomicrobiol J 21(5):331–340

    Article  CAS  Google Scholar 

  • Burton G Jr (2002) Sediment quality criteria in use around the world. Limnology 3:65–75

    Article  CAS  Google Scholar 

  • Canadian Council of Ministers of the Environment (2001) Canadian sediment quality guidelines for the protection of aquatic life. http://www.ccme.ca/en/resources/canadian_environmental_quality_guidelines/. Accessed 4 Nov 2017

  • Carlson L, Bigham JM, Schwertmann U, Kyek A, Wagner F (2002) Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues. Environ Sci Technol 36:1712–1719

    Article  PubMed  CAS  Google Scholar 

  • Chaput DL, Hansel CM, Burgos WD, Santelli CM (2015) Profiling microbial communities in manganese remediation systems treating coal mine drainage. Appl Environ Microbiol 81:2189–2198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edwards KJ, Gihring TM, Banfield JF (1999) Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl Environ Microbiol 65(8):3627–3632

    PubMed  PubMed Central  CAS  Google Scholar 

  • EPA United States Environmental Protection Agency (2017) Abandoned mine lands: basic information. https://www.epa.gov/superfund/abandoned-mine-lands-basic-information-0. Accessed 4 Nov 2017

  • Fadiran AO, Dlamini CL, Thwala JM (2014) Environmental assessment of acid mine drainage pollution on surface water bodies around Ngwenya Mine, Swaziland. J Environ Prot 5:164–173

    Article  CAS  Google Scholar 

  • Falagán C, Johnson DB (2014) Acidibacter ferrireducens gen. nov., sp. nov.: an acidophilic ferric iron-reducing gammaproteobacterium. Extremophiles 18(6):1067–1073

    Article  PubMed  CAS  Google Scholar 

  • García-Moyano A, Erling Austnes A, Lanzén A, González-Toril E, Aguilera Á, Øvreås L (2015) Novel and unexpected microbial diversity in acid mine drainage in Svalbard (78° N), revealed by culture-independent approaches. Microorganisms 3:667–694

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Dutta A, Sarkar J, Paul D, Panigrahi MK, Sar P (2017) Metagenomic exploration of microbial community in mine tailings of Malanjkhand copper project, India. Genom Data 12:11–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallberg KB (2010) New perspectives in acid mine drainage microbiology. Hydrometallurgy 104:448–453

    Article  CAS  Google Scholar 

  • Hao C, Wang L, Gao Y, Zhang L, Dong H (2010) Microbial diversity in acid mine drainage of Xiang Mountain sulfide mine, Anhui Province, China. Extremophiles 14:465–474

    Article  PubMed  Google Scholar 

  • Hernandez AJ, Pastor J (2008) Relationship between plant biodiversity and heavy metal bioavailability in grasslands overlying an abandoned mine. Environ Geochem Health 30:127–133

    Article  PubMed  CAS  Google Scholar 

  • Jackson TA, Vlaar S, Nguyen N, Leppard GG, Finan TM (2015) Effects of bioavailable heavy metal species, arsenic, and acid drainage from mine tailings on a microbial community sampled along a pollution gradient in a freshwater ecosystem. Geomicrobiol J 32:724–750

    Article  CAS  Google Scholar 

  • Jennings SR, Neuman DR, Blicker PS (2008) Acid mine drainage and effects on fish health and ecology: a review. Reclamation Research Group Publication, Bozeman

    Google Scholar 

  • Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473

    Article  PubMed  CAS  Google Scholar 

  • Kirschbaum A, Murray J, Arnosio M, Tonda R, Cacciabue L (2012) Pasivos ambientales mineros en el noroeste de Argentina: aspectos mineralógicos, geoquímicos y consecuencias ambientales. Revista Mexicana de Ciencias Geológicas 29(1):248–264

    Google Scholar 

  • Kuang JL, Huang LN, Chen LX, Hua ZS, Li SL, Hu M et al (2013) Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J 7:1038–1050

    Article  PubMed  CAS  Google Scholar 

  • Kuppusamya S, Thavamanic P, Megharaj M, Venkateswarlu K, Lee YB, Naidub R (2016) Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: implications to bioremediation. J Hazard Mater 317:169–179

    Article  CAS  Google Scholar 

  • Latorre M, Cortés MP, Travisany D, Di Genova A, Budinich M, Reyes-Jara A, Hödar C et al (2016) The bioleaching potential of a bacterial consortium. Bioresour Technol 218:659–666

    Article  PubMed  CAS  Google Scholar 

  • Mauck BS, Roberts JA (2007) Mineralogic control on abundance and diversity of surface-adherent microbial communities. Geomicrobiol J 24:167–177

    Article  CAS  Google Scholar 

  • Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina OV, Ferrer M (2015) Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol 6:475

    PubMed  PubMed Central  Google Scholar 

  • Mesa V, Gallego JLR, González-Gil R, Lauga B, Sánchez J, Méndez-García C, Peláez AI (2017) Bacterial, archaeal, and eukaryotic diversity across distinct microhabitats in an acid mine drainage. Front Microbiol 8:1756

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer F, Paarmann D, D´Souza M, Olson R, Glass EM, Kubal M et al (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386

    Article  CAS  Google Scholar 

  • Mori JF, Neu TR, Lu S, Händel M, Totsche U, Küsel K (2015) Iron encrustations on filamentous algae colonized by Gallionella-related bacteria in a metal-polluted freshwater stream. Biogeosciences 12:5277–5289

    Article  CAS  Google Scholar 

  • Oblasser A, Chaparro Ávila E (2008) Estudio comparativo de la gestión de los pasivos ambientales mineros en Bolivia, Chile, Perú y Estados Unidos. CEPAL—Serie Recursos Naturales e Infraestructura N° 131. Santiago de Chile, 2008. ISBN: 978-92-1-323175-3

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  PubMed  CAS  Google Scholar 

  • Rincon-Florez VA, Carvalhais C, Schenk PM (2013) Culture-independent molecular tools for soil and rhizosphere microbiology. Diversity 5:581–612

    Article  Google Scholar 

  • Ruggieri F, Gil RA, Fernandez-Turiel JL, Saavedra J, Gimeno D, Lobo A et al (2012) Multivariate factorial analysis to design a robust batch leaching test to assess the volcanic ash geochemical hazard. J Hazard Mater 213–214:279–284

    Google Scholar 

  • Schowe KA, Harding JS, Broady PA (2013) Diatom community response to an acid mine drainage gradient. Hydrobiologia 705:147–158

    Article  CAS  Google Scholar 

  • Singh M, Ansari AA, Müller G, Singh IB (1997) Heavy metals in freshly deposited sediments of Gomti river (a tributary of the Ganga river): effects of human activities. Environ Geol 29:246–252

    Article  CAS  Google Scholar 

  • Sun W, Xiao E, Krumins V, Dong Y, Xiao T, Ning Z et al (2016) Characterization of the microbial community composition and the distribution of Fe-metabolizing bacteria in a creek contaminated by acid mine drainage. Appl Microbiol Biotechnol 100(19):8523–8535

    Article  PubMed  CAS  Google Scholar 

  • Tiwari MK, Bajpai S, Dewangan UK, Tamrakar RK (2015) Suitability of leaching test methods for fly ash and slag: a review. J Radiat Res Appl Sci 8:523–537

    Article  Google Scholar 

  • Tripole ES, Corigliano MC (2005) Acid stress evaluation using multimetric indices in the Carolina stream (San Luis –Argentina). Acta Limnol Bras 17(1):101–114

    Google Scholar 

  • Tripole S, Gonzalez P, Vallania A, Garbagnati M, Mallea M (2006) Evaluation of the impact of acid mine drainage on the chemistry and the macrobenthos in the Carolina stream (San luis—Argentina). Environ Monit Assess 114:377–389

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the English Scientific Writing Advice Group (GAECI) of the National University of San Luis for the revision of this article. Bonilla JO thanks CONICET for the awarded doctoral fellowship.

Funding

This work was supported by financial assistance of the National Agency for Scientific and Technological Promotion, Argentina [PICT 2013 No. 3170 to Dr. Villegas].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana B. Villegas.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Communicated by L. Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

792_2018_1030_MOESM1_ESM.pdf

Supplementary material 1 (PDF 353 kb). Online Resource 1 Information of the sequencing data obtained from the metagenomics analysis of 16S rRNA and 18S rRNA genes

792_2018_1030_MOESM2_ESM.pdf

Supplementary material 2 (PDF 376 kb). Online Resource 2 Rarefaction curves obtained from Silva NGS server with 16S rRNA gene metagenomics data (A) and 18S rRNA gene metagenomics data (B)

Supplementary material 3 (PDF 195 kb). Online Resource 3 Alpha diversity metrics calculated using QIIME 1.9 scripts

792_2018_1030_MOESM4_ESM.pdf

Supplementary material 4 (PDF 166 kb). Online Resource 4 Relative abundance of prokaryotic phyla and classes obtained from metagenomics analysis of 16S rRNA sequences in selected samples

792_2018_1030_MOESM5_ESM.pdf

Supplementary material 5 (PDF 189 kb). Online Resource 5 Relative abundance of prokaryotic taxonomic groups obtained from metagenomics analysis of 16S rRNA sequences in selected samples

792_2018_1030_MOESM6_ESM.pdf

Supplementary material 6 (PDF 184 kb). Online Resource 6 Relative abundance of eukaryotic taxonomic groups obtained from metagenomics analysis of 18S rRNA sequences in selected sediment samples. Taxonomic groups not shown in this table correspond to higher eukaryotic organisms and were not included here

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonilla, J.O., Kurth, D.G., Cid, F.D. et al. Prokaryotic and eukaryotic community structure affected by the presence of an acid mine drainage from an abandoned gold mine. Extremophiles 22, 699–711 (2018). https://doi.org/10.1007/s00792-018-1030-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-018-1030-y

Keywords

Navigation