Advertisement

Extremophiles

, Volume 22, Issue 3, pp 511–523 | Cite as

Halobacterium salinarum storage and rehydration after spray drying and optimization of the processes for preservation of carotenoids

  • Sergei V. Kalenov
  • Mariia G. Gordienko
  • Ekaterina D. Murzina
  • Daniil Y. Poberezhniy
  • Dmitry V. Baurin
  • Natalia E. Suzina
  • Alexander N. Morozov
  • Liubov M. Yakubovich
  • Alexey A. Belov
  • Victor I. Panfilov
  • Oksana V. Yarovaya
  • Michail M. Il’in
  • Vladimir V. Sorokin
  • Dmitry A. Skladnev
Original Paper

Abstract

Spray drying is appropriate for the preservation of halophilic microorganisms due to the nature of these microorganisms, as they survive in adverse environmental conditions by being encapsulated in salt crystals. Artificial neural networks were in this study used to optimize practically significant spray-drying regimes of the C50-carotenoids producer Halobacterium salinarum. Immediately after drying, the samples contained up to 54% halobacterial biomass and less than 5% moisture, and the level of preservation of carotenoids was 95–97%. The storage of biomass at 4 °C resulted in the gradual degradation of the carotenoids, which reached 58–64% in the best samples after 1 year. A comprehensive study of changes in halobacteria biomass after spray drying and the nature of the damage provided new data on the survival and preservation of cells and biologically active substances in the various spray-drying regimes and at different storage times.

Keywords

Halobacterium salinarum Spray drying Carotenoids Halophiles, artificial neural network 

Abbreviations

DMSO

Dimethyl sulfoxide

ANN

Artificial neural network

CFU

Colony forming unit

Notes

Acknowledgements

The work is financially supported with the Grant of Russian Science Foundation No. 16-19-10469.

Supplementary material

792_2018_1013_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1969 kb)

References

  1. Akolkar AV, Durai D, Desai AJ (2009) Halobacterium sp. SP1(1) as a starter culture for accelerating fish sauce fermentation. J Appl Microbiol 109:44–53.  https://doi.org/10.1111/j.1365-2672.2009.04626.x PubMedGoogle Scholar
  2. Ananta E, Volkert M, Knorr D (2005) Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. Int Dairy J 15:399–409.  https://doi.org/10.1016/j.idairyj.2004.08.004 CrossRefGoogle Scholar
  3. Association of Official Analytical Chemists (2016) Official methods of analysis of AOAC international, 20th edn. AOAC Press, GaithersburgGoogle Scholar
  4. Baliga NS, Bjork SJ, Bonneau R, Pan M, Iloanusi C, Kottemann MC, Hood L, DiRuggiero J (2004) Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1. Genome Res 14:1025–1035.  https://doi.org/10.1101/gr.1993504 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Behboudi-Jobbehdar S, Soukoulis C, Yonekura L, Fisk I (2013) Optimization of spray-drying process conditions for the production of maximally viable microencapsulated L. acidophilus NCIMB 701748. Dry Technol 31:1274–1283.  https://doi.org/10.1080/07373937.2013.788509 CrossRefGoogle Scholar
  6. DasSarma S, DasSarma P (2017) Halophiles. In: eLS. Wiley, Chichester, UK, pp 1–13.  https://doi.org/10.1002/9780470015902.a0000394.pub4 Google Scholar
  7. DasSarma P, Coker JA, Huse V, DasSarma S (2010) Halophiles, industrial applications. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation and cell technology. Wiley, Hoboken, NJ, pp 1–43Google Scholar
  8. Desmond C, Stanton C, Fitzgerald GF, Collins K, Ross RP (2001) Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying. Int Dairy J 11:801–808.  https://doi.org/10.1016/S0958-6946(01)00121-2 CrossRefGoogle Scholar
  9. Dummer AM, Bonsall JC, Cihla JB, Lawry SM, Johnson GC, Peck RF (2011) Bacterioopsin-mediated regulation of bacterioruberin biosynthesis in Halobacterium salinarum. J Bacteriol 193:5658–5667.  https://doi.org/10.1128/JB.05376-11 CrossRefPubMedPubMedCentralGoogle Scholar
  10. El-Agamey A, Lowe GM, McGarvey DJ, Mortensen A, Phillip DM, Truscott TG, Young AJ (2004) Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 430:37–48.  https://doi.org/10.1016/j.abb.2004.03.007 CrossRefPubMedGoogle Scholar
  11. Fendrihan S, Bérces A, Lammer H, Musso M, Rontó G, Polacsek TK, Holzinger A, Kolb C, Stan-Lotter H (2009) Investigating the effects of simulated Martian ultraviolet radiation on Halococcus dombrowskii and other extremely halophilic archaebacteria. Astrobiology 9:104–112.  https://doi.org/10.1089/ast.2007.0234 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fu W-Y, Etzel MR (1995) Spray drying of Lactococcus lactis ssp. lactis C2 and cellular injury. J Food Sci 60:195–200.  https://doi.org/10.1111/j.1365-2621.1995.tb05636.x CrossRefGoogle Scholar
  13. Ghandi A, Powell IB, Howes T, Chen XD, Adhikari B (2012) Effect of shear rate and oxygen stresses on the survival of Lactococcus lactis during the atomization and drying stages of spray drying: a laboratory and pilot scale study. J Food Eng 113:194–200.  https://doi.org/10.1016/j.jfoodeng.2012.06.005 CrossRefGoogle Scholar
  14. Goh F, Jeon YJ, Barrow K, Neilan BA, Burns BP (2011) Osmoadaptive strategies of the archaeon Halococcus hamelinensis isolated from a hypersaline stromatolite environment. Astrobiology 11:529–536.  https://doi.org/10.1089/ast.2010.0591 CrossRefPubMedGoogle Scholar
  15. Golowczyc MA, Silva J, Abraham AG, De Antoni GL, Teixeira P (2010) Preservation of probiotic strains isolated from kefir by spray drying. Lett Appl Microbiol 50:7–12.  https://doi.org/10.1111/j.1472-765X.2009.02759.x CrossRefPubMedGoogle Scholar
  16. Gong P, Zhang L, Han X, Shigwedha N, Song W, Yi H, Du M, Cao C (2014) Injury mechanisms of lactic acid bacteria starter cultures during spray drying: a review. Drying Technol 32:793–800.  https://doi.org/10.1080/07373937.2013.860458 CrossRefGoogle Scholar
  17. Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G, Busse HJ, Stan-Lotter H (2004) Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum. Extremophiles 8:431–439.  https://doi.org/10.1007/s00792-004-0403-6 CrossRefPubMedGoogle Scholar
  18. Jaakkola ST, Zerulla K, Guo Q, Liu Y, Ma H, Yang C, Bamford DH, Chen X, Soppa J, Oksanen HM (2014) Halophilic archaea cultivated from surface sterilized middle-late Eocene rock salt are polyploid. PLoS One 9:e110533.  https://doi.org/10.1371/journal.pone.0110533 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kalenov SV, Baurina MM, Skladnev DA, Kuznetsov AY (2016) High-effective cultivation of Halobacterium salinarum providing with bacteriorhodopsin production under controlled stress. J Biotechnol 233:211–218.  https://doi.org/10.1016/j.jbiotec.2016.07.014 CrossRefPubMedGoogle Scholar
  20. Kochish II, Naidenskiy MS, Totoevva ME (2008) Efficacy of the immunostimulating Baxinum-vet preparation poultry (article in Russian). Poult Chick Prod 5:29–31Google Scholar
  21. Kosanke JW, Osburn RM, Shuppe GI, Smith RS (1992) Slow rehydration improves the recovery of dried bacterial populations. Can J Microbiol 38:520–525.  https://doi.org/10.1139/m92-086 CrossRefPubMedGoogle Scholar
  22. Kottemann M, Kish A, Iloanusi C, Bjork S, DiRuggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles 9:219–227.  https://doi.org/10.1007/s00792-005-0437-4 CrossRefPubMedGoogle Scholar
  23. Lavari L, Ianniello R, Páez R, Zotta T, Cuatrin A, Reinheimer J, Parente E, Vinderola G (2015) Growth of Lactobacillus rhamnosus 64 in whey permeate and study of the effect of mild stresses on survival to spray drying. LWT Food Sci Technol 63:322–330.  https://doi.org/10.1016/j.lwt.2015.03.066 CrossRefGoogle Scholar
  24. Leach G, Oliveira G, Morais R (1998) Spray-drying of Dunaliella salina to produce a β-carotene rich powder. J Ind Microbiol Biotechnol 20:82–85.  https://doi.org/10.1038/sj.jim.2900485 CrossRefGoogle Scholar
  25. López-Cortés A, Ochoa JL (1998) The biological significance of Halobacteria on nucleation and sodium chloride crystal growth. Stud Surf Sci Catal 120:903–923.  https://doi.org/10.1016/S0167-2991(99)80384-X CrossRefGoogle Scholar
  26. Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83.  https://doi.org/10.1007/s007920100184 CrossRefPubMedGoogle Scholar
  27. Morgan CA, Herman N, White PA, Vesey G (2006) Preservation of micro-organisms by drying; a review. J Microbiol Methods 66:183–193.  https://doi.org/10.1016/j.mimet.2006.02.017 CrossRefPubMedGoogle Scholar
  28. Oren A (2002) Halophilic microorganisms and their environments. Kluwer Academic Publishers, Dordrecht, The Netherlands, p 575.  https://doi.org/10.1007/0-306-48053-0 CrossRefGoogle Scholar
  29. Oren A (2016) Life in hypersaline environments. In: Hurst CJ (ed) Their world: a diversity of microbial environments. Springer International Publishing, Cham, pp 301–339CrossRefGoogle Scholar
  30. Peighambardoust SH, Golshan Tafti A, Hesari J (2011) Application of spray drying for preservation of lactic acid starter cultures: a review. Trends Food Sci Technol 22:215–224.  https://doi.org/10.1016/j.tifs.2011.01.009 CrossRefGoogle Scholar
  31. Raposo MFJ, Morais AMMB, Morais RMSC (2012) Effects of spray-drying and storage on astaxanthin content of Haematococcus pluvialis biomass. World J Microbiol Biotechnol 28:1253–1257.  https://doi.org/10.1007/s11274-011-0929-6 CrossRefPubMedGoogle Scholar
  32. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rodrigo-Baños M, Garbayo I, Vílchez C, Bonete MJ, Martínez-Espinosa RM (2015) Carotenoids from Haloarchaea and their potential in biotechnology. Mar Drugs 13:5508–5532.  https://doi.org/10.3390/md13095508 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sakane T, Fukuda I, Itoh T, Yokota A (1992) Long-term preservation of halophilic archaebacteria and thermoacidophilic archaebacteria by liquid drying. J Microbiol Methods 16:281–287.  https://doi.org/10.1016/0167-7012(92)90080-N CrossRefGoogle Scholar
  35. Salin ML, Brown-Peterson NJ (1993) Dealing with active oxygen intermediates: a halophilic perspective. Cell Mol Life Sci 49:523–529.  https://doi.org/10.1007/BF01955155 CrossRefGoogle Scholar
  36. Samborska K, Witrowa-Rajchert D, Gonçalves A (2005) Spray-drying of α-amylase—the effect of process variables on the enzyme inactivation. Dry Technol 23:941–953.  https://doi.org/10.1081/DRT-200054243 CrossRefGoogle Scholar
  37. Schuck P, Dolivet A, Méjean S, Hervé C, Jeantet R (2013) Spray drying of dairy bacteria: new opportunities to improve the viability of bacteria powders. Int Dairy J 31:12–17.  https://doi.org/10.1016/j.idairyj.2012.01.006 CrossRefGoogle Scholar
  38. Stan-Lotter H, Fendrihan S (2013) Survival strategies of halophilic oligotrophic and desiccation resistant prokaryotes. In: Seckbach J, Oren A, Stan-Lotter H (eds) Polyextremophiles. Life under multiple form of stress, Springer, Dordrecht, The Netherlands, pp 233–248.  https://doi.org/10.1007/978-94-007-6488-0 Google Scholar
  39. Stan-Lotter H, Radax C, Gruber C, Legat A, Pfaffenhuemer M, Wieland H, Leuko S, Weidler G, Kömle N, Kargl G (2002) Astrobiology with haloarchaea from Permo-Triassic rock salt. Int J Astrobiol 1:S1473550403001307.  https://doi.org/10.1017/S1473550403001307 CrossRefGoogle Scholar
  40. Staroselov MA, Basova NY, Skhatum AK, Fedorov YuE, Pachina VV, Markov AN (2016) Effect of prebiotic Baxinum-vet on the intestinal microbiocenosis of newborn calves (article in Russian). Russ J Probl Vet Sanit Hyg Ecol 1:72–75Google Scholar
  41. Teixeira P, Castro H, Kirby R (1995) Spray drying as a method for preparing concentrated cultures of Lactobacillus bulgaricus. J Appl Bacteriol 78:456–462.  https://doi.org/10.1111/j.1365-2672.1995.tb03433.x CrossRefGoogle Scholar
  42. Teixeira P, Castro H, Kirby R (1996) Evidence of membrane lipid oxidation of spray-dried Lactobacillus bulgaricus during storage. Lett Appl Microbiol 22:34–38.  https://doi.org/10.1111/j.1472-765X.1996.tb01103.x CrossRefGoogle Scholar
  43. Tindall BJ (1991) Cultivation and preservation of members of the family Halobacteriaceae. World J Microbiol Biotechnol 7:95–98.  https://doi.org/10.1007/BF02310924 CrossRefPubMedGoogle Scholar
  44. Vasil’ev IK (2007) Baxinum (book in Russian). Nikopharm, MoscowGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Sergei V. Kalenov
    • 1
  • Mariia G. Gordienko
    • 2
  • Ekaterina D. Murzina
    • 1
  • Daniil Y. Poberezhniy
    • 1
  • Dmitry V. Baurin
    • 1
  • Natalia E. Suzina
    • 3
  • Alexander N. Morozov
    • 4
  • Liubov M. Yakubovich
    • 5
  • Alexey A. Belov
    • 1
  • Victor I. Panfilov
    • 1
  • Oksana V. Yarovaya
    • 6
  • Michail M. Il’in
    • 7
  • Vladimir V. Sorokin
    • 8
  • Dmitry A. Skladnev
    • 9
  1. 1.Department of Biotechnology, Faculty of Biotechnology and Industrial EcologyD.I. Mendeleyev University of Chemical Technology of RussiaMoscowRussia
  2. 2.Department of Cybernetics, Faculty of Computer Aided Process EngineeringMendeleyev University of Chemical Technology of RussiaMoscowRussia
  3. 3.Laboratory of Cytology of Microorganisms, Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchinoRussia
  4. 4.Department of Technology of Inorganic Substances and Electrochemical Processes, Faculty of Technology of Inorganic Substances and High Temperature MaterialsMendeleyev University of Chemical Technology of RussiaMoscowRussia
  5. 5.Department of Analytical, Physical and Colloid Chemistry, Faculty of PharmacySechenov First Moscow State Medical UniversityMoscowRussia
  6. 6.Department of Colloid Chemistry, Faculty of Natural SciencesMendeleyev University of Chemical Technology of RussiaMoscowRussia
  7. 7.Laboratory for Stereochemistry of Sorption ProcessesNesmeyanov Institute of Organoelement Compounds of Russian Academy of SciencesMoscowRussia
  8. 8.CCU “Collection of Microorganisms UNIQEM”, Winogradsky Institute of MicrobiologyResearch Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
  9. 9.Laboratory of Viability of Microorganisms, Winogradsky Institute of MicrobiologyResearch Center of Biotechnology of the Russian Academy of SciencesMoscowRussia

Personalised recommendations