Advertisement

Extremophiles

, Volume 22, Issue 3, pp 461–471 | Cite as

Functional dissection of the three N-terminal general secretory pathway domains and the Walker motifs of the traffic ATPase PilF from Thermus thermophilus

  • Kerstin Kruse
  • Ralf Salzer
  • Friederike Joos
  • Beate Averhoff
Original Paper

Abstract

The traffic ATPase PilF of Thermus thermophilus powers pilus assembly as well as uptake of DNA. PilF differs from other traffic ATPases by a triplicated general secretory pathway II, protein E, N-terminal domain (GSPIIABC). We investigated the in vivo and in vitro roles of the GSPII domains, the Walker A motif and a catalytic glutamate by analyzing a set of PilF deletion derivatives and pilF mutants. Here, we report that PilF variants devoid of the first two or all three GSPII domains do not form stable hexamers indicating a role of the triplicated GSPII domain in complex formation and/or stability. A pilFΔGSPIIC mutant was significantly impaired in piliation which leads to the conclusion that the GSPIIC domain plays a vital role in pilus assembly. Interestingly, the pilFΔGSPIIC mutant was hypertransformable. This suggests that GSPIIC strongly affects transformation efficiency. A pilF∆GSPIIA mutant exhibited wild-type piliation but reduced pilus-mediated twitching motility, suggesting that GSPIIA plays a role in pilus dynamics. Furthermore, we report that pilF mutants with a defect in the ATP binding Walker A motif or in the catalytic glutamate residue are defective in piliation and natural transformation. These findings show that both, ATP binding and hydrolysis, are essential for the dual function of PilF in natural transformation and pilus assembly.

Keywords

ATPase Natural competence Type IV pili Cell motility Membrane transport Thermophile 

Abbreviations

GSP

General secretory pathway

T4P

Type IV pilus

T2SS

Type II secretion system

GF

Gel filtration

bleo

Bleomycin

PAGE

Polyacrylamide gel electrophoresis

SDS

Sodium dodecyl sulfate

Notes

Acknowledgements

This work was supported by a grant from the Deutsche Forschungsgemeinschaft (AV 9/6-2). We thank Bernd Ludwig (Goethe University, Frankfurt, Germany) for the kind gift of plasmid pDM12.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

792_2018_1008_MOESM1_ESM.pdf (798 kb)
Supplementary material 1 (PDF 798 kb)

References

  1. Abendroth J, Murphy P, Sandkvist M, Bagdasarian M, Hol WG (2005) The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae. J Mol Biol 348:845–855CrossRefPubMedGoogle Scholar
  2. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42Google Scholar
  3. Averhoff B (2009) Shuffling genes around in hot environments: the unique DNA transporter of Thermus thermophilus. FEMS Microbiol Rev 33:611–626CrossRefPubMedGoogle Scholar
  4. Averhoff B, Friedrich A (2003) Type IV pili-related natural transformation systems: DNA transport in mesophilic and thermophilic bacteria. Arch Microbiol 180:385–393CrossRefPubMedGoogle Scholar
  5. Babst M, Wendland B, Estepa EJ, Emr SD (1998) The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J 17:2982–2993CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bertani G (1951) Studies on lysogenesis. J Bacteriol 62:293–300PubMedPubMedCentralGoogle Scholar
  7. Burkhardt J, Vonck J, Averhoff B (2011) Structure and function of PilQ, a secretin of the DNA transporter from the thermophilic bacterium Thermus thermophilus HB27. J Biol Chem 286:9977–9984CrossRefPubMedPubMedCentralGoogle Scholar
  8. Burkhardt J, Vonck J, Langer JD, Salzer R, Averhoff B (2012) Unusual N-terminal ααβαββα fold of PilQ from Thermus thermophilus mediates ring formation and is essential for piliation. J Biol Chem 287:8484–8494CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cava F, Hidalgo A, Berenguer J (2009) Thermus thermophilus as biological model. Extremophiles 13:213–231CrossRefPubMedGoogle Scholar
  10. Chen Y, Shiue SJ, Huang CW, Chang JL, Chien YL, Hu NT, Chan NL (2005) Structure and function of the XpsE N-terminal domain, an essential component of the Xanthomonas campestris type II secretion system. J Biol Chem 280:42356–42363CrossRefPubMedGoogle Scholar
  11. Chiang P, Sampaleanu LM, Ayers M, Pahuta M, Howell PL, Burrows LL (2008) Functional role of conserved residues in the characteristic secretion NTPase motifs of the Pseudomonas aeruginosa type IV pilus motor proteins PilB, PilT and PilU. Microbiol 154:114–126CrossRefGoogle Scholar
  12. Collins RF, Hassan D, Karuppiah V, Thistlethwaite A, Derrick JP (2013) Structure and mechanism of the PilF DNA transformation ATPase from Thermus thermophilus. Biochem J 450:417–425CrossRefPubMedPubMedCentralGoogle Scholar
  13. Friedrich A, Hartsch T, Averhoff B (2001) Natural transformation in mesophilic and thermophilic bacteria: identification and characterization of novel, closely related competence genes in Acinetobacter sp. strain BD413 and Thermus thermophilus HB27. Appl Environ Microbiol 67:3140–3148CrossRefPubMedPubMedCentralGoogle Scholar
  14. Friedrich A, Prust C, Hartsch T, Henne A, Averhoff B (2002) Molecular analyses of the natural transformation machinery and identification of pilus structures in the extremely thermophilic bacterium Thermus thermophilus strain HB27. Appl Environ Microbiol 68:745–755CrossRefPubMedPubMedCentralGoogle Scholar
  15. Friedrich A, Rumszauer J, Henne A, Averhoff B (2003) Pilin-like proteins in the extremely thermophilic bacterium Thermus thermophilus HB27: implication in competence for natural transformation and links to type IV pilus biogenesis. Appl Environ Microbiol 69:3695–3700CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ghosh A, Hartung S, Van Der Does C, Tainer JA, Albers S-V (2011) Archaeal flagellar ATPase motor shows ATP-dependent hexameric assembly and activity stimulation by specific lipid binding. Biochem J 437:43–52CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gold VA, Salzer R, Averhoff B, Kühlbrandt W (2015) Structure of a type IV pilus machinery in the open and closed state. Elife 4:e07380CrossRefPubMedCentralGoogle Scholar
  18. Iyer LM, Leipe DD, Koonin EV, Aravind L (2004) Evolutionary history and higher order classification of AAA + ATPases. J Struct Biol 146:11–31CrossRefPubMedGoogle Scholar
  19. Jakovljevic V, Leonardy S, Hoppert M, Søgaard-Andersen L (2008) PilB and PilT are ATPases acting antagonistically in type IV pilus function in Myxococcus xanthus. J Bacteriol 190:2411–2421CrossRefPubMedPubMedCentralGoogle Scholar
  20. Karuppiah V, Derrick JP (2011) Structure of the PilM-PilN inner membrane type IV pilus biogenesis complex from Thermus thermophilus. J Biol Chem 286:24434–24442CrossRefPubMedPubMedCentralGoogle Scholar
  21. Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in Prokaryotes: quantification and classification. Annu Rev Microbiol 55:709–742CrossRefPubMedPubMedCentralGoogle Scholar
  22. Koyama Y, Hoshino T, Tomizuka N, Furukawa K (1986) Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. J Bacteriol 166:338–340CrossRefPubMedPubMedCentralGoogle Scholar
  23. Krause S, Bárcena M, Pansegrau W, Lurz R, Carazo JM, Lanka E (2000) Sequence-related protein export NTPases encoded by the conjugative transfer region of RP4 and by the cag pathogenicity island of Helicobacter pylori share similar hexameric ring structures. Proc Natl Acad Sci USA 97:3067–3072CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lämmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  25. Mancl JM, Black WP, Robinson H, Yang Z, Schubot FD (2016) Crystal structure of a type IV pilus assembly ATPase: insights into the molecular mechanism of PilB from Thermus thermophilus. Structure 24:1886–1897CrossRefPubMedGoogle Scholar
  26. McCallum M et al (2016) PilN binding modulates the structure and binding partners of the Pseudomonas aeruginosa type IVa pilus protein PilM. J Biol Chem 291:11003–11015CrossRefPubMedPubMedCentralGoogle Scholar
  27. McCallum M, Tammam S, Khan A, Burrows LL, Howell PL (2017) The molecular mechanism of the type IVa pilus motors. Nat Commun 8:15091CrossRefPubMedPubMedCentralGoogle Scholar
  28. Nelson KE et al (1999) Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329CrossRefPubMedGoogle Scholar
  29. Omelchenko MV et al (2005) Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance. BMC Evol Biol 5:57CrossRefPubMedPubMedCentralGoogle Scholar
  30. Oshima T, Imahori K (1974) Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa. Int J Syst Bacteriol 24:102–112CrossRefGoogle Scholar
  31. Peabody CR, Chung YJ, Yen MR, Vidal-Ingigliardi D, Pugsley AP, Saier MH Jr (2003) Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiol 149:3051–3072CrossRefGoogle Scholar
  32. Planet PJ, Kachlany SC, DeSalle R, Figurski DH (2001) Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci USA 98:2503–2508CrossRefPubMedPubMedCentralGoogle Scholar
  33. Robien MA, Krumm BE, Sandkvist M, Hol WG (2003) Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae. J Mol Biol 333:657–674CrossRefPubMedGoogle Scholar
  34. Rose I, Biukovic G, Aderhold P, Müller V, Grüber G, Averhoff B (2011) Identification and characterization of a unique, zinc-containing transport ATPase essential for natural transformation in Thermus thermophilus HB27. Extremophiles 15:191–202CrossRefPubMedGoogle Scholar
  35. Sakai D, Horiuchi T, Komano T (2001) ATPase activity and multimer formation of PilQ protein are required for thin pilus biogenesis in plasmid R64. J Biol Chem 276:17968–17975CrossRefPubMedGoogle Scholar
  36. Salzer R, Herzberg M, Nies DH, Joos F, Rathmann B, Thielmann Y, Averhoff B (2014a) Zinc and ATP binding of the hexameric AAA-ATPase PilF from T. thermophilus: role in complex stability, piliation, adhesion, twitching motility and natural transformation. J Biol Chem 289:30343–30354CrossRefPubMedPubMedCentralGoogle Scholar
  37. Salzer R, Joos F, Averhoff B (2014b) Type IV pilus biogenesis, twitching motility, and DNA uptake in Thermus thermophilus: discrete roles of antagonistic ATPases PilF, PilT1, and PilT2. Appl Environ Microbiol 80:644–652CrossRefPubMedPubMedCentralGoogle Scholar
  38. Salzer R, Kern T, Joos F, Averhoff B (2016) The Thermus thermophilus comEA/comEC operon is associated with DNA binding and regulation of the DNA translocator and type IV pili. Environ Microbiol 18:65–74CrossRefPubMedGoogle Scholar
  39. Sandkvist M, Bagdasarian M, Howard SP, DiRita VJ (1995) Interaction between the autokinase EpsE and EpsL in the cytoplasmic membrane is required for extracellular secretion in Vibrio cholerae. EMBO J 14:1664–1673PubMedPubMedCentralGoogle Scholar
  40. Schwarzenlander C, Averhoff B (2006) Characterization of DNA transport in the thermophilic bacterium Thermus thermophilus HB27. FEBS J 273:4210–4218CrossRefPubMedGoogle Scholar
  41. Schwarzenlander C, Haase W, Averhoff B (2009) The role of single subunits of the DNA transport machinery of Thermus thermophilus HB27 in DNA binding and transport. Environ Microbiol 11:801–808CrossRefPubMedGoogle Scholar
  42. Seitz P, Blokesch M (2013) DNA-uptake machinery of naturally competent Vibrio cholerae. Proc Natl Acad Sci USA 110:17987–17992CrossRefPubMedPubMedCentralGoogle Scholar
  43. Shiue SJ, Kao KM, Leu WM, Chen LY, Chan NL, Hu NT (2006) XpsE oligomerization triggered by ATP binding, not hydrolysis, leads to its association with XpsL. EMBO J 25:1426–1435CrossRefPubMedPubMedCentralGoogle Scholar
  44. Story RM, Steitz TA (1992) Structure of the recA protein-ADP complex. Nature 355:374CrossRefPubMedGoogle Scholar
  45. Turner LR, Lara JC, Nunn DN, Lory S (1993) Mutations in the consensus ATP-binding sites of XcpR and PilB eliminate extracellular protein secretion and pilus biogenesis in Pseudomonas aeruginosa. J Bacteriol 175:4962–4969CrossRefPubMedPubMedCentralGoogle Scholar
  46. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951PubMedPubMedCentralGoogle Scholar
  47. Wittig I, Karas M, Schägger H (2007) High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Mol Cell Proteom 6:1215–1225CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Kerstin Kruse
    • 1
  • Ralf Salzer
    • 1
  • Friederike Joos
    • 2
  • Beate Averhoff
    • 1
  1. 1.Molecular Microbiology & Bioenergetics, Institute of Molecular BiosciencesGoethe University FrankfurtFrankfurt am MainGermany
  2. 2.Department of Structural BiologyMax-Planck Institute of BiophysicsFrankfurt am MainGermany

Personalised recommendations