Extremophiles

, Volume 22, Issue 3, pp 367–379 | Cite as

Microbial communities and their predicted metabolic functions in a desiccating acid salt lake

  • Elena Zaikova
  • Kathleen C. Benison
  • Melanie R. Mormile
  • Sarah Stewart Johnson
Original Paper

Abstract

The waters of Lake Magic in Western Australia are among the most geochemically extreme on Earth. This ephemeral saline lake is characterized by pH as low as 1.6 salinity as high as 32% total dissolved solids, and unusually complex geochemistry, including extremely high concentrations of aluminum, silica, and iron. We examined the microbial composition and putative function in this extreme acid brine environment by analyzing lake water, groundwater, and sediment samples collected during the austral summer near peak evapoconcentration. Our results reveal that the lake water metagenome, surprisingly, was comprised of mostly eukaryote sequences, particularly fungi and to a lesser extent, green algae. Groundwater and sediment samples were dominated by acidophilic Firmicutes, with eukaryotic community members only detected at low abundances. The lake water bacterial community was less diverse than that in groundwater and sediment, and was overwhelmingly represented by a single OTU affiliated with Salinisphaera. Pathways associated with halotolerance were found in the metagenomes, as were genes associated with biosynthesis of protective carotenoids. During periods of complete desiccation of the lake, we hypothesize that dormancy and entrapment in fluid inclusions in halite crystals may increase long-term survival, leading to the resilience of complex eukaryotes in this extreme environment.

Keywords

Acid brine Lake Extremophiles Polyextremophilic Microbial communities Fluid inclusions 

Notes

Acknowledgements

We thank Yi Cui (Missouri S&T) for assistance with DNA extraction. This work was supported by an Experimental Program to Stimulate Competitive Research at the National Aeronautics and Space Administration, Missouri Research Infrastructure Development award (M.M.), a Georgetown University Main Campus Research Fellowship (S.S.J. and E.Z.), and West Virginia University (K.B.).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

792_2018_1000_MOESM1_ESM.pdf (924 kb)
Supplementary Fig. 1. Taxonomic composition and diversity of bacterial SSU rRNA gene OTUs (97% ID). Krona charts showing the relative abundance of each bacterial taxon identified in the Lake Magic samples. Within each chart, circles are arranged hierarchically, with the innermost circle corresponding to phylum and outermost circle representing genus. LW = lake water, GW = groundwater, and SS = subaqueous sediment (PDF 923 kb)
792_2018_1000_MOESM2_ESM.pdf (866 kb)
Supplementary Fig. 2. Taxonomic composition and diversity of Lake Magic metagenomic reads. (a) Krona charts showing the relative abundance of bacterial phyla identified in the Lake Magic samples. The PVC clade includes the phyla Chlamydiaea, Lentisphaerae, Planctomycetes, and Verrucomicrobia, the FCB group encompasses the Chlorobi, Bacteroidetes and Fibrobacteres phyla, and the Terrabacteria group includes the Actinobacteria, Deinococcus–Thermus, Cyanobacteria, Chloroflexi, and Firmicutes. (b) Krona charts showing the relative abundance of eukaryotic phyla identified in the Lake Magic samples. LW = lake water, GW = groundwater, and MFS = mudflat sediment (PDF 866 kb)
792_2018_1000_MOESM3_ESM.pdf (872 kb)
Supplementary Fig. 3. Distribution of Lake Magic metagenomic read assignments to SEED subsystems. Bars represent the total number of reads assigned to each subsystem. LW = lake water (green), GW = groundwater (blue), and MFS = mudflat sediment (purple) (PDF 872 kb)

References

  1. Amaral Zettler LA, Gómez F, Zettler E et al (2002) Microbiology: eukaryotic diversity in Spain’s River of Fire. Nature 417:137.  https://doi.org/10.1038/417137a CrossRefPubMedGoogle Scholar
  2. Amaral-Zettler LA (2012) Eukaryotic diversity at pH extremes. Front Microbiol 3:1–17.  https://doi.org/10.3389/fmicb.2012.00441 Google Scholar
  3. Amoozegar MA, Bagheri M, Makhdoumi A et al (2016) Oceanobacillus longus sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol.  https://doi.org/10.1099/ijsem.0.001339 Google Scholar
  4. Antunes A, Eder W, Fareleira P, Santos H, Huber R (2003) Salinisphaera shabanensis gen. nov., sp. nov., a novel, moderately halophilic bacterium from the brine-seawater interface of the Shaban Deep, Red Sea. Extremophiles 7(1):29–34.  https://doi.org/10.1007/s00792-002-0292-5 PubMedGoogle Scholar
  5. Antunes A, Rainey FA, Wanner G et al (2008) A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled deep of the Red Sea. J Bacteriol 190:3580–3587.  https://doi.org/10.1128/JB.01860-07 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Antunes A, Alam I, Bajic VB, Stingl U (2011) Genome sequence of Salinisphaera shabanensis, a gammaproteobacterium from the harsh, variable environment of the brine-seawater interface of the Shaban Deep in the Red Sea. J Bacteriol 193:4555–4556.  https://doi.org/10.1128/JB.05459-11 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152.  https://doi.org/10.1016/S0168-6496(03)00028-X CrossRefPubMedGoogle Scholar
  8. Benison KC (2013) Acid saline fluid inclusions: examples from modern and Permian extreme lake systems. Geofluids 13:579–593.  https://doi.org/10.1111/gfl.12053 CrossRefGoogle Scholar
  9. Benison KC, Bowen BB (2006) Acid saline lake systems give clues about past environments and the search for life on Mars. Icarus 183:225–229.  https://doi.org/10.1016/j.icarus.2006.02.018 CrossRefGoogle Scholar
  10. Benison KC, Bowen BB (2013) Extreme sulfur-cycling in acid brine lake environments of Western Australia. Chem Geol 351:154–167.  https://doi.org/10.1016/j.chemgeo.2013.05.018 CrossRefGoogle Scholar
  11. Benison KC, Bowen BB (2015) The evolution of end-member continental waters: the origin of acidity in southern Western Australia. GSA Today 25:4–10.  https://doi.org/10.1130/GSATG231A.1 CrossRefGoogle Scholar
  12. Benison KC, Karmanocky FJ (2014) Could microorganisms be preserved in Mars gypsum? Insights from terrestrial examples. Geology 42:615–617.  https://doi.org/10.1130/G35542.1 CrossRefGoogle Scholar
  13. Benison KC, Bowen BB, Oboh-Ikuenobe FE et al (2007) Sedimentology of acid saline lakes in southern Western Australia: newly described processes and products of an extreme environment. J Sedim Res 77:366–388.  https://doi.org/10.2110/jsr.2007.038 CrossRefGoogle Scholar
  14. Bi F, Barad S, Ment D et al (2016) Carbon regulation of environmental pH by secreted small molecules that modulate pathogenicity in phytopathogenic fungi. Mol Plant Pathol 17:1178–1195.  https://doi.org/10.1111/mpp.12355 CrossRefPubMedGoogle Scholar
  15. Bowen BB, Benison KC (2009) Geochemical characteristics of naturally acid and alkaline saline lakes in southern Western Australia. Appl Geochem 24:268–284.  https://doi.org/10.1016/j.apgeochem.2008.11.013 CrossRefGoogle Scholar
  16. Brake SS, Hasiotis ST (2010) Eukaryote-dominated biofilms and their significance in acidic environments. Geomicrobiol J 27:534–558.  https://doi.org/10.1080/01490451003702966 CrossRefGoogle Scholar
  17. Chang SS, Kang DH (2004) Alicyclobacillus spp. in the fruit juice industry: history, characteristics, and current isolation/detection procedures. Crit Rev Microbiol 30:55–74.  https://doi.org/10.1080/10408410490435089 CrossRefPubMedGoogle Scholar
  18. Chen L, Brügger K, Skovgaard M et al (2005) The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 187:4992–4999.  https://doi.org/10.1128/JB.187.14.4992 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Conner AJ, Benison KC (2013) Acidophilic halophilic microorganisms in fluid inclusions in halite from Lake Magic, Western Australia. Astrobiology 13:850–860.  https://doi.org/10.1089/ast.2012.0956 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Crespo-Medina M, Chatziefthimiou A, Cruz-Matos R et al (2009) Salinisphaera hydrothermalis sp. nov., a mesophilic, halotolerant, facultatively autotrophic, thiosulfate-oxidizing gammaproteobacterium from deep-sea hydrothermal vents, and emended description of the genus Salinisphaera. Int J Syst Evol Microbiol 59:1497–1503.  https://doi.org/10.1099/ijs.0.005058-0 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dai X, Wang H, Zhang Z et al (2016) Genome sequencing of Sulfolobus sp. A20 from Costa Rica and comparative analyses of the putative pathways of carbon, nitrogen, and sulfur metabolism in various Sulfolobus strains. Front Microbiol.  https://doi.org/10.3389/fmicb.2016.01902 Google Scholar
  22. De Vries RP, Flitter SJ, Van De Vondervoort PJI et al (2003) Glycerol dehydrogenase, encoded by gldB is essential for osmotolerance in Aspergillus nidulans. Mol Microbiol 49:131–141.  https://doi.org/10.1046/j.1365-2958.2003.03554.x CrossRefPubMedGoogle Scholar
  23. Dombrowski H (1966) Geological problems in the question of living bacteria in Paleozoic salt deposits. Second Symp Salt 1:215–220Google Scholar
  24. Edwards KJ, Bond PL, Gihring TM et al (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799.  https://doi.org/10.1126/science.287.5459.1796 CrossRefPubMedGoogle Scholar
  25. Farmer J, Bell JFI, Benison KC et al (2009) Assessment of planetary protection requirements for Mars sample return missions. The National Academies Press, Washington, DCGoogle Scholar
  26. Fredrickson JK, Chandler DP, Onstott TC (1997) Potential for preservation of halobacteria and their macromolecular constituents in brine inclusions from bedded salt deposits, pp 318–329Google Scholar
  27. Fredrickson JK, Li SW, Gaidamakova EK et al (2008) Protein oxidation: key to bacterial desiccation resistance? ISME J 2:393–403.  https://doi.org/10.1038/ismej.2007.116 CrossRefPubMedGoogle Scholar
  28. Gi DB, Chung YH, Hye MK, Byung CC (2010) Salinisphaera dokdonensis sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 60:680–685.  https://doi.org/10.1099/ijs.0.010058-0 CrossRefGoogle Scholar
  29. Grant WD, Gemmell RT, McGenity TJ (1998) Halobacteria: the evidence for longevity. Extremophiles 2:279–287CrossRefPubMedGoogle Scholar
  30. Heidelberg KB, Nelson WC, Holm JB et al (2013) Characterization of eukaryotic microbial diversity in hypersaline Lake Tyrrell, Australia. Front Microbiol 4:1–14.  https://doi.org/10.3389/fmicb.2013.00115 CrossRefGoogle Scholar
  31. Hong B, Christiansen JM, Oboh-Ikuenobe FE, Bowen BB, Benison KC, Mormile MR (2006) Microbial diversity found in the acid saline lakes of Australia. In: American society for microbiology 106th general meeting, Orlando, FL, N-089, p 388Google Scholar
  32. Jang SJ, Kim YJ, Lee SH et al (2014) Oceanobacillus gochujangensis sp. nov., isolated from gochujang a traditional Korean fermented food. J Microbiol 52:1050–1055.  https://doi.org/10.1007/s12275-014-4220-z CrossRefPubMedGoogle Scholar
  33. Jiang CY, Liu Y, Liu YY, You XY, Guo X, Liu SJ (2008) Alicyclobacillus ferrooxydans sp. nov., a ferrous-oxidizing bacterium from solfataric soil. Int J Syst Evol Microbiol 58:2898–2903CrossRefPubMedGoogle Scholar
  34. Johnson DB, Bridge TAM (2002) Reduction of ferric iron by acidophilic heterotrophic bacteria: evidence for constitutive and inducible enzyme systems in Acidiphilium spp. J Appl Microbiol 92:315–321.  https://doi.org/10.1046/j.1365-2672.2002.01535.x CrossRefPubMedGoogle Scholar
  35. Johnson SS, Chevrette MG, Ehlmann BL, Benison KC (2015) Insights from the metagenome of an acid salt lake: the role of biology in an extreme depositional environment. PLoS One 10:1–19.  https://doi.org/10.1371/journal.pone.0122869 Google Scholar
  36. Jones RM, Hedrich S, Johnson DB (2013) Acidocella aromatica sp. nov.: an acidophilic heterotrophic alphaproteobacterium with unusual phenotypic traits. Extremophiles 17:841.  https://doi.org/10.1007/s00792-013-0566-0 CrossRefPubMedGoogle Scholar
  37. Kim MG, Lee JC, Park DJ, Li WJ, Kim CJ (2014) Alicyclobacillus tengchongensis sp. nov., a thermo-acidophilic bacterium isolated from hot spring soil. J Microbiol 52:884–889CrossRefPubMedGoogle Scholar
  38. Kovaleva J, Degener JE, Van Der Mei HC (2014) Methylobacterium and its role in health care-associated infection. J Clin Microbiol 52:1317–1321.  https://doi.org/10.1128/JCM.03561-13 CrossRefPubMedPubMedCentralGoogle Scholar
  39. La Duc MT, Dekas A, Osman S et al (2007) Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments. Appl Environ Microbiol 73:2600–2611.  https://doi.org/10.1128/AEM.03007-06 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lagier J-C, Khelaifia S, Azhar EI et al (2015) Genome sequence of Oceanobacillus picturae strain S1, an halophilic bacterium first isolated in human gut. Stand Genom Sci 10:91.  https://doi.org/10.1186/s40793-015-0081-2 CrossRefGoogle Scholar
  41. Leitão AL, García-Estrada C, Ullán RV et al (2012) Penicillium chrysogenum var. halophenolicum, a new halotolerant strain with potential in the remediation of aromatic compounds in high salt environments. Microbiol Res 167:79–89.  https://doi.org/10.1016/j.micres.2011.03.004 CrossRefPubMedGoogle Scholar
  42. Lowenstein T, Brennan ST (2001) Fluid inclusions in paleolimnological studies of chemical sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments: physical and geochemical methods. Springer, Dordrecht, pp 189–216Google Scholar
  43. Lu J, Nogi Y, Takami H (2001) Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. FEMS Microbiol Lett 205:291–297.  https://doi.org/10.1016/S0378-1097(01)00493-1 CrossRefPubMedGoogle Scholar
  44. Lu S, Gischkat S, Reiche M, Akob DM, Hallberg KB, Küsel K (2010) Ecophysiology of Fe-cycling bacteria in acidic sediments. Appl Environ Microbiol 76:8174–8183.  https://doi.org/10.1128/AEM.01931-10 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lu S, Peiffer S, Lazar CS et al (2016) Extremophile microbiomes in acidic and hypersaline river sediments of Western Australia. Environ Microbiol Rep 8:58–67.  https://doi.org/10.1111/1758-2229.12351 CrossRefPubMedGoogle Scholar
  46. Mao D, Grogan D (2012) Genomic evidence of rapid, global-scale gene flow in a Sulfolobus species. ISME J 6:1613–1616.  https://doi.org/10.1038/ismej.2012.20 CrossRefPubMedPubMedCentralGoogle Scholar
  47. McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2:243–250CrossRefPubMedGoogle Scholar
  48. Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina OV, Ferrer M (2015) Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol 6:475.  https://doi.org/10.3389/fmicb.2015.00475 PubMedPubMedCentralGoogle Scholar
  49. Mormile MR, Biesen MA, Gutierrez MC et al (2003) Isolation of Halobacterium salinarum retrieved directly from halite brine inclusions. Environ Microbiol 5:1094–1102.  https://doi.org/10.1046/j.1462-2920.2003.00509.x CrossRefPubMedGoogle Scholar
  50. Mormile MR, Hong B, Adams NT, et al (2007) Characterization of a moderately halo-acidophilic bacterium isolated from Lake Brown, Western Australia. In: Instruments, methods, and missions for astrobiology X.  https://doi.org/10.1117/12.734741
  51. Mormile MR, Hong B-Y, Benison KC (2009) Molecular analysis of the microbial communities of Mars analog lakes in Western Australia. Astrobiology 9:919–930.  https://doi.org/10.1089/ast.2008.0293 CrossRefPubMedGoogle Scholar
  52. Naglik JR, Challacombe SJ, Hube B (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67:400–428.  https://doi.org/10.1128/mmbr.67.3.400 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nazareth SW, Gonsalves V (2014) Halophilic Aspergillus penicillioides from athalassohaline, thalassohaline, and polyhaline environments. Front Microbiol 5:1–5.  https://doi.org/10.3389/fmicb.2014.00412 CrossRefGoogle Scholar
  54. Norton C, Grant W (1988) Survival of halobacteria within fluid inclusions in salt crystals. J Gen Microbiol 134:1365–1371.  https://doi.org/10.1099/00221287-134-5-1365 Google Scholar
  55. Park SJ, Cha IT, Kim SJ et al (2012) Salinisphaera orenii sp. nov., isolated from a solar saltern. Int J Syst Evol Microbiol 62:1877–1883.  https://doi.org/10.1099/ijs.0.028647-0 CrossRefPubMedGoogle Scholar
  56. Prusky D, Yakoby N (2003) Pathogenic fungi: leading or led by ambient pH? Mol. Plant Pathol. 4:509–516CrossRefPubMedGoogle Scholar
  57. Prusky D, McEvoy JL, Leverentz B, Conway WS (2001) Local modulation of host pH by Colletotrichum species as a mechanism to increase virulence. Mol Plant Microb Interact 14:1105–1113.  https://doi.org/10.1094/MPMI.2001.14.9.1105 CrossRefGoogle Scholar
  58. Redkar RJ, Locy RD, Singh NK (1995) Biosynthetic pathways of glycerol accumulation under salt stress in Aspergillus nidulans. Exp Mycol 19:241–246CrossRefPubMedGoogle Scholar
  59. Reiser R, Tasch P (1960) Investigation of the viability of osmophile bacteria of great geological age. Trans Kans Acad Sci 63:31–34.  https://doi.org/10.2307/3626919 CrossRefPubMedGoogle Scholar
  60. Ruecker A, Schröder C, Byrne J et al (2016) Geochemistry and mineralogy of Western Australian salt lake sediments: implications for Meridiani Planum on Mars. Astrobiology 16:525–538.  https://doi.org/10.1089/ast.2015.1429 CrossRefPubMedGoogle Scholar
  61. Ruepp A, Graml W, Santos-Martinez ML et al (2000) The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature 407:508–513.  https://doi.org/10.1038/35035069 CrossRefPubMedGoogle Scholar
  62. Sánchez-Andrea I, Rodríguez N, Amils R, Sanz JL (2011) Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content. Appl Environ Microbiol 77:6085–6093.  https://doi.org/10.1128/AEM.00654-11 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Schleper C, Piihler G, Kuhlmorgen B, Zillig W (1995) Life at extremely low pH. Nature 375:741–742.  https://doi.org/10.1038/375741b0 CrossRefPubMedGoogle Scholar
  64. Schubert BA, Lowenstein TK, Timofeeff MN, Parker MA (2009) How do prokaryotes survive in fluid inclusions in halite for 30 k.y.? Geology 37:1059–1062.  https://doi.org/10.1130/G30448A.1 CrossRefGoogle Scholar
  65. Schubert BA, Lowenstein TK, Timofeeff MN, Parker MA (2010a) Halophilic archaea cultured from ancient halite, Death Valley, California. Environ Microbiol 12:440–454.  https://doi.org/10.1111/j.1462-2920.2009.02086.x CrossRefPubMedGoogle Scholar
  66. Schubert BA, Timofeeff MN, Lowenstein TK, Polle JEW (2010b) Dunaliella cells in fluid inclusions in halite: significance for long-term survival of prokaryotes. Geomicrobiol J 27:61–75.  https://doi.org/10.1080/01490450903232207 CrossRefGoogle Scholar
  67. Shimane Y, Tsuruwaka Y, Miyazaki M et al (2013) Salinisphaera japonica sp. nov., a moderately halophilic bacterium isolated from the surface of a deep-sea fish, malacocottus gibber, and emended description of the genus Salinisphaera. Int J Syst Evol Microbiol 63:2180–2185.  https://doi.org/10.1099/ijs.0.047845-0 CrossRefPubMedGoogle Scholar
  68. Simbahan J, Drijber R, Blum P (2004) Alicyclobacillus vulcanalis sp. nov., a thermophilic, acidophilic bacterium isolated from Coso Hot Springs, California, USA. Int J Syst Evol Microbiol 54:1703–1707CrossRefPubMedGoogle Scholar
  69. Squyres SW, Grotzinger JP, Arvidson RE et al (2004) In situ evidence for an ancient aqueous environment at Meridian Planum. Science 306(80):1709–1714.  https://doi.org/10.1126/science.1104559 CrossRefPubMedGoogle Scholar
  70. Stan-Lotter H, McGenity TJ, Legat A et al (1999) Very similar strains of Halococcus salifodinae are found in geographically separated Permo-Triassic salt deposits. Microbiology 145:3565–3574.  https://doi.org/10.1099/00221287-145-12-3565 CrossRefPubMedGoogle Scholar
  71. Stieglmeier M, Wirth R, Kminek G, Moissl-Eichinger C (2009) Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms. Appl Environ Microbiol 75:3484–3491.  https://doi.org/10.1128/AEM.02565-08 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900.  https://doi.org/10.1038/35038060 CrossRefPubMedGoogle Scholar
  73. Walls I, Chuyate R (2000) Spoilage of fruit juices by Alicyclobacillus acidoterrestris: Alicyclobacillus in the food industry. Food Aust 52:286–288Google Scholar
  74. Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764.  https://doi.org/10.1038/nrmicro1490 CrossRefPubMedGoogle Scholar
  75. Weigold P, Ruecker A, Loesekann-Behrens T et al (2016) Ribosomal tag pyrosequencing of DNA and RNA reveals “rare” taxa with high protein synthesis potential in the sediment of a hypersaline lake in Western Australia. Geomicrobiol J 33:426–440.  https://doi.org/10.1080/01490451.2015.1049304 CrossRefGoogle Scholar
  76. Whon TW, Jung M-J, Roh SW et al (2010) Oceanobacillus kimchii sp. nov. isolated from a traditional Korean fermented food. J Microbiol 48:862–866.  https://doi.org/10.1007/s12275-010-0214-7 CrossRefPubMedGoogle Scholar
  77. Yahya A, Hallberg KB, Johnson DB (2008) Iron and carbon metabolism by a mineral-oxidizing Alicyclobacillus-like bacterium. Arch Microbiol 189:305–312CrossRefPubMedGoogle Scholar
  78. Yang L, Lübeck M, Lübeck PS (2017) Aspergillus as a versatile cell factory for organic acid production. Fungal Biol Rev 31:33–49CrossRefGoogle Scholar
  79. Yilancioglu K, Cokol M, Pastirmaci I et al (2014) Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. PLoS One 9:e91957.  https://doi.org/10.1371/journal.pone.0091957 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zhang YJ, Tang SK, Shi R et al (2012) Salinisphaera halophila sp. nov., a moderately halophilic bacterium isolated from brine of a salt well. Int J Syst Evol Microbiol 62:2174–2179.  https://doi.org/10.1099/ijs.0.035584-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Elena Zaikova
    • 1
  • Kathleen C. Benison
    • 2
  • Melanie R. Mormile
    • 3
  • Sarah Stewart Johnson
    • 1
    • 4
  1. 1.Department of BiologyGeorgetown UniversityWashingtonUSA
  2. 2.Department of Geology and GeographyWest Virginia UniversityMorgantownUSA
  3. 3.Department of BiologyMissouri University of Science and TechnologyRollaUSA
  4. 4.Program on Science, Technology, and International AffairsGeorgetown UniversityWashingtonUSA

Personalised recommendations