Advertisement

Extremophiles

, Volume 22, Issue 2, pp 221–231 | Cite as

Genome sequencing and heterologous expression of antiporters reveal alkaline response mechanisms of Halomonas alkalicola

  • Lei Zhai
  • Jiuyan Xie
  • Yafang Lin
  • Kun Cheng
  • Lijiang Wang
  • Feng Yue
  • Jingyan Guo
  • Jiquan LiuEmail author
  • Su YaoEmail author
Original Paper

Abstract

Halomonas alkalicola CICC 11012s is an alkaliphilic and halotolerant bacterium isolated from a soap-making tank (pH > 10) from a household-product plant. This strain can propagate at pH 12.5, which is fatal to most bacteria. Genomic analysis revealed that the genome size was 3,511,738 bp and contained 3295 protein-coding genes, including a complete cell wall and plasma membrane lipid biosynthesis pathway. Furthermore, four putative Na+/H+ and K+/H+ antiporter genes, or gene clusters, designated as HaNhaD, HaNhaP, HaMrp and HaPha, were identified within the genome. Heterologous expression of these genes in antiporter-deficient Escherichia coli indicated that HaNhaD, an Na+/H+ antiporter, played a dominant role in Na+ tolerance and pH homeostasis in acidic, neutral and alkaline environments. In addition, HaMrp exhibited Na+ tolerance; however, it functioned mainly in alkaline conditions. Both HaNhaP and HaPha were identified as K+/H+ antiporters that played an important role in high alkalinity and salinity. In summary, genome analysis and heterologous expression experiments demonstrated that a complete set of adaptive strategies have been developed by the double extremophilic strain CICC 11012s in response to alkalinity and salinity. Specifically, four antiporters exhibiting different physiological roles for different situations worked together to support the strain in harsh surroundings.

Keywords

Halomonas alkalicola Alkalinity Na+ (K+)/H+antiporter NhaD 

Notes

Acknowledgements

This work was supported by the Fund of National Infrastructure of Microbial Resources (No. NIMR2017-4). The authors thank Professor Yanfen Xue (Institute of Microbiology, Chinese Academy of Sciences, Beijing, China) and Professor Jun Liu (Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China) for kindly providing E. coli KNabc strain and E. coli TK2420 strain.

Supplementary material

792_2017_991_MOESM1_ESM.docx (186 kb)
Supplementary material 1 (DOCX 186 kb)

References

  1. Aono R (1987) Characterization of structural component of cell walls of alkalophilic strain of Bacillus sp. C-125. Preparation of poly (gamma-l-glutamate) from cell wall component. Biochem J 245:467–472.  https://doi.org/10.1042/bj2450467 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aono R, Ito M, Machida T (1999) Contribution of the cell wall component teichuronopeptide to pH homeostasis and alkaliphily in the alkaliphile Bacillus lentus C-125. J Bacteriol 181:6600–6606PubMedPubMedCentralGoogle Scholar
  3. Arias-Cartin R, Grimaldi S, Arnoux P, Guigliarelli B, Magalon A (2012) Cardiolipin binding in bacterial respiratory complexes: structural and functional implications. Biochim Biophys Acta 1817:1937–1949.  https://doi.org/10.1016/j.bbabio.2012.04.005 CrossRefPubMedGoogle Scholar
  4. Banciu H, Muntyan M (2015) Adaptive strategies in the double-extremophilic prokaryotes inhabiting soda lakes. Curr Opin Microbiol 25:73–79.  https://doi.org/10.1016/j.mib.2015.05.003 CrossRefPubMedGoogle Scholar
  5. Banciu H, Sorokin D, Rijpstra WIC et al (2005) Fatty acid, compatible solute and pigment composition of obligately chemolithoautotrophic alkaliphilic sulfur-oxidizing bacteria from soda lakes. FEMS Microbiol Lett 243:181–187.  https://doi.org/10.1016/j.femsle.2004.12.004 CrossRefPubMedGoogle Scholar
  6. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580.  https://doi.org/10.1093/nar/27.2.573 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Blankenhorn D, Phillips J, Slonczewski JL (1999) Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J Bacteriol 181:2209–2216PubMedPubMedCentralGoogle Scholar
  8. Chen JS, Reddy V, Chen JH et al (2011) Phylogenetic characterization of transport protein superfamilies: superiority of Superfamily Tree programs over those based on multiple alignments. J Mol Microbiol Biotechnol 21:83–96.  https://doi.org/10.1159/000334611 CrossRefPubMedGoogle Scholar
  9. Cheng B, Meng Y, Cui Y et al (2016) Alkaline response of a halotolerant alkaliphilic Halomonas strain and functional diversity of Its Na + (K +)/H + antiporters. J Biol Chem 291:26056–26065.  https://doi.org/10.1074/jbc.m116.751016 CrossRefPubMedGoogle Scholar
  10. Clejan S, Krulwich TA, Mondrus KR, Seto-Young D (1986) Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. J Bacteriol 168:334–340.  https://doi.org/10.1128/jb.168.1.334-340.1986 CrossRefPubMedPubMedCentralGoogle Scholar
  11. De LV, Catucci L, Ventrella A et al (2009) Cardiolipin increases in chromatophores isolated from Rhodobacter sphaeroides after osmotic stress: structural and functional roles. J Lipid Res 50:256–264.  https://doi.org/10.1194/jlr.m800312-jlr200 CrossRefGoogle Scholar
  12. Delcher AL, Harmon D, Kasif S et al (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641.  https://doi.org/10.1093/nar/27.23.4636 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Delcher AL, Bratke KA, Powers EC et al (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679.  https://doi.org/10.1093/bioinformatics/btm009 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Epstein W (2003) The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res 75:293–320.  https://doi.org/10.1016/s0079-6603(03)75008-9 CrossRefGoogle Scholar
  15. Epstein W, Buurman E, McLaggan D, Naprstek J (1993) Multiple mechanisms, roles and controls of K+ transport in Escherichia coli. Biochem Soc Trans 21:1006–1010.  https://doi.org/10.1042/bst0211006 CrossRefPubMedGoogle Scholar
  16. Fujisawa M, Wada Y, Tsuchiya T, Ito M (2009) Characterization of Bacillus subtilis YfkE (ChaA): a calcium-specific Ca2+/H+ antiporter of the CaCA family. Arch Microbiol 191:649–657.  https://doi.org/10.1007/s00203-009-0494-7 CrossRefPubMedGoogle Scholar
  17. Gardner PP, Daub J, Tate JG et al (2009) Rfam: updates to the RNA families database. Nucleic Acids Res 37(Database issue):D136–D140.  https://doi.org/10.1093/nar/gkn766 CrossRefPubMedGoogle Scholar
  18. Gouet P, Courcelle E, Stuart D, Metoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308.  https://doi.org/10.1093/bioinformatics/15.4.305 CrossRefPubMedGoogle Scholar
  19. Hauß T, Dante S, Dencher NA, Haines TH (2002) Squalane is in the midplane of the lipid bilayer: implications for its function as a proton permeability barrier. Biochim Biophys Acta 1556:149–156.  https://doi.org/10.1016/s0005-2728(02)00346-8 CrossRefPubMedGoogle Scholar
  20. Ito M, Guffanti AA, Zemsky J, Ivey DM, Krulwich TA (1997) Role of the nhaC-encoded Na+/H+ antiporter of alkaliphilic Bacillus firmus OF4. J Bacteriol 179:3851–3857.  https://doi.org/10.1128/jb.179.12.3851-3857.1997 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kajiyama Y, Otagiri M, Sekiguchi J, Kosono S, Kudo T (2007) Complex formation by the mrpABCDEFG gene products, which constitute a principal Na+/H+ antiporter in Bacillus subtilis. J Bacteriol 189:7511–7514.  https://doi.org/10.1128/jb.00968-07 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kanehisa M (1997) A database for post-genome analysis. Trends Genet 13:375–376.  https://doi.org/10.1016/s0168-9525(97)01223-7 CrossRefPubMedGoogle Scholar
  23. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2003) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:277–280.  https://doi.org/10.1093/nar/gkh063 CrossRefGoogle Scholar
  24. Kanehisa M, Goto S, Hattori M et al (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357.  https://doi.org/10.1093/nar/gkj102 CrossRefPubMedGoogle Scholar
  25. Krulwich TA (1995) Alkaliphiles: ‘basic’ molecular problems of pH tolerance and bioenergetics. Mol Microbiol 15:403–410.  https://doi.org/10.1111/j.1365-2958.1995.tb02253.x CrossRefPubMedGoogle Scholar
  26. Krulwich TA (2006) Alkaliphilic prokaryotes. Springer, New YorkCrossRefGoogle Scholar
  27. Kurz M, Brünig A, Galinski E (2006) NhaD type sodium/proton-antiporter of Halomonas elongata: a salt stress response mechanism in marine habitats? Saline Syst 2:10.  https://doi.org/10.1186/1746-1448-2-10 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lagesen K, Hallin P, Rødland EA et al (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108.  https://doi.org/10.1093/nar/gkm160 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Li H, Zhang LP, Chen S (2008a) Halomonas korlensis sp. nov. a moderately halophilic, denitrifying bacterium isolated from saline and alkaline soil. Int J Syst Evol Microbiol 58:2582–2588.  https://doi.org/10.1099/ijs.0.65711-0 CrossRefPubMedGoogle Scholar
  30. Li R, Li Y, Kristiansen K, Wang J (2008b) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714.  https://doi.org/10.1093/bioinformatics/btn025 CrossRefPubMedGoogle Scholar
  31. Li R, Zhu H, Ruan J et al (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272.  https://doi.org/10.1101/gr.097261.109 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Liu J, Xue Y, Wang Q et al (2005) The activity profile of the NhaD-type Na+ (Li+)/H+ antiporter from the soda lake haloalkaliphile Alkalimonas amylolytica is adaptive for the extreme environment. J Bacteriol 187:7589–7595.  https://doi.org/10.1128/jb.187.22.7589-7595.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964.  https://doi.org/10.1093/nar/25.5.955 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ma Y, Zhang W, Xue Y, Zhou P, Ventosa A, Grant WD (2004) Bacterial diversity of the Inner Mongolian Baer Soda Lake as revealed by 16S rRNA gene sequence analyses. Extremophiles 8:45–51.  https://doi.org/10.1007/s00792-003-0358-z CrossRefPubMedGoogle Scholar
  35. Miao C, Jia F, Wan Y et al (2014) Halomonas huangheensis sp. nov. a moderately halophilic bacterium isolated from a saline–alkali soil. Int J Syst Evol Microbiol 64:915–920.  https://doi.org/10.1099/ijs.0.056556-0 CrossRefPubMedGoogle Scholar
  36. Morino M, Natsui S, Swartz TH, Krulwich TA, Ito M (2008) Single gene deletions of mrpA to mrpG and mrpE point mutations affect activity of the Mrp Na+/H+ antiporter of alkaliphilic Bacillus and formation of hetero-oligomeric Mrp complexes. J Bacteriol 190:4162–4172.  https://doi.org/10.1128/jb.00294-08 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nozaki K, Inaba K, Kuroda T, Tsuda M, Tsuchiya T (1996) Cloning and sequencing of the gene for Na+/H+ antiporter of Vibrio parahaemolyticus. Biochem Biophys Res Commun 222:774–779.  https://doi.org/10.1006/bbrc.1996.0820 CrossRefPubMedGoogle Scholar
  38. Ono H, Okuda M, Tongpim S et al (1998) Accumulation of compatible solutes, ectoine and hydroxyectoine, in a moderate halophile, Halomonas elongata, KS3 isolated from dry salty land in Thailand. J Ferment Bioeng 85:362–368.  https://doi.org/10.1016/s0922-338x(98)80078-0 CrossRefGoogle Scholar
  39. Ostroumov E, Dzioba J, Loewen PC, Dibrov P (2002) Asp (344) and Thr (345) are critical for cation exchange mediated by NhaD, Na(+)/H(+) antiporter of Vibrio cholerae. Biochim Biophys Acta 1564:99–106.  https://doi.org/10.1016/s0005-2736(02)00407-8 CrossRefPubMedGoogle Scholar
  40. Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717:67–88.  https://doi.org/10.1016/j.bbamem.2005.09.010 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Padan E, Danieli T, Keren Y et al (2015) NhaA antiporter functions using 10 helices, and an additional 2 contribute to assembly/stability. Proc Natl Acad Sci USA 112:E5575–E5582.  https://doi.org/10.1073/pnas.1510964112 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Pinner E, Padan E, Schuldiner S (1992) Cloning, sequencing and expression of the NhaB gene, encoding a Na+: H+ antiporter in Escherichia coli. J Biol Chem 267:11064–11068PubMedGoogle Scholar
  43. Putnoky P, Kereszt A, Nakamura T et al (1998) The pha gene cluster of Rhizobium meliloti involved in pH adaptation and symbiosis encodes a novel type of K+ efflux system. Mol Microbiol 28:1091–1101.  https://doi.org/10.1046/j.1365-2958.1998.00868.x CrossRefPubMedGoogle Scholar
  44. Romano I, Giordano A, Lama L, Nicolaus B, Gambacorta A (2005) Halomonas campaniensis sp. nov. a haloalkaliphilic bacterium isolated from a mineral pool of Campania Region, Italy. Syst Appl Microbiol 28:610–618.  https://doi.org/10.1016/j.syapm.2005.03.010 CrossRefPubMedGoogle Scholar
  45. Sääf A, Baars L, von Heijne G (2001) The internal repeats in the Na+/Ca2+ exchanger-related Escherichia coli protein YrbG have opposite membrane topologies. J Biol Chem 276:18905–18907.  https://doi.org/10.1074/jbc.m101716200 CrossRefPubMedGoogle Scholar
  46. Saier MH Jr, Tran CV, Barabote RD (2006) TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34:D181–D186.  https://doi.org/10.1093/nar/gkj001 CrossRefPubMedGoogle Scholar
  47. Salzberg SL, Delcher AL, Kasif S, White O (1998) Microbial gene identification using interpolated Markov models. Nucleic Acids Res 26:544–548.  https://doi.org/10.1093/nar/26.2.544 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sorokin DY, Banciu H, Robertson LA et al (2013) Halophilic and Haloalkaliphilic Sulfur-Oxidizing Bacteria. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  49. Sousa PM, Videira MA, Vorburger T et al (2013) The novel NhaE-type Na+/H+ antiporter of the pathogenic bacterium Neisseria meningitidis. Arch Microbiol 195:211–217.  https://doi.org/10.1007/s00203-012-0856-4 CrossRefPubMedGoogle Scholar
  50. Tang X, Zhai L, Lin Y et al (2017) Halomonas alkalicola sp. nov., isolated from a household product plant. Int J Syst Evol Microbiol 67:1546–1550.  https://doi.org/10.1099/ijsem.0.001757 CrossRefPubMedGoogle Scholar
  51. Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637.  https://doi.org/10.1126/science.278.5338.631 CrossRefPubMedGoogle Scholar
  52. Tatusov RL, Fedorova ND, Jackson JD et al (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41.  https://doi.org/10.1186/1471-2105-4-41 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Tusnády GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849.  https://doi.org/10.1093/bioinformatics/17.9.849 CrossRefPubMedGoogle Scholar
  54. Vreeland RH, Litchfield CD, Martin EL, Elliot E (1980) Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Evol Microbiol 30:485–495.  https://doi.org/10.1099/00207713-30-2-485 Google Scholar
  55. Wang Y, Cai H, Chi C et al (2007) Halomonas shengliensis sp. nov. a moderately halophilic, denitrifying, crude-oil-utilizing bacterium. Int J Syst Evol Microbiol 57:1222–1226.  https://doi.org/10.1099/ijs.0.64973-0 CrossRefPubMedGoogle Scholar
  56. Wang Y, Song N, Yang L et al (2017) A novel NhaD-type Na+/H+ antiporter from the moderate halophile and alkaliphile Halomonas alkaliphila. Can J Microbiol 63:596–607.  https://doi.org/10.1139/cjm-2017-0104 CrossRefPubMedGoogle Scholar
  57. Xu X, Wu Y, Zhou Z et al (2007) Halomonas saccharevitans sp. nov. Halomonas arcis sp. nov. and Halomonas subterranea sp. nov. halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57:1619–1624.  https://doi.org/10.1099/ijs.0.65022-0 CrossRefPubMedGoogle Scholar
  58. Yang C, Wang Z, Li Y et al (2010) Metabolic versatility of halotolerant and alkaliphilic strains of Halomonas isolated from alkaline black liquor. Bioresour Technol 101:6778–6784.  https://doi.org/10.1016/j.biortech.2010.03.108 CrossRefPubMedGoogle Scholar
  59. Zhang H, Wang Z, Wang L et al (2014) Cloning and identification of a novel NhaD-type Na+/H+ antiporter from metagenomic DNA of the halophilic bacteria in soil samples around Daban Salt Lake. Extremophiles 18:89–98.  https://doi.org/10.1007/s00792-013-0600-2 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  • Lei Zhai
    • 1
  • Jiuyan Xie
    • 1
  • Yafang Lin
    • 2
  • Kun Cheng
    • 1
  • Lijiang Wang
    • 2
  • Feng Yue
    • 2
  • Jingyan Guo
    • 2
  • Jiquan Liu
    • 3
    Email author
  • Su Yao
    • 1
    Email author
  1. 1.China Center of Industrial Culture Collection (CICC)China National Research Institute of Food and Fermentation IndustriesBeijingPeople’s Republic of China
  2. 2.Procter & Gamble Technologies (Beijing) LtdBeijingPeople’s Republic of China
  3. 3.Procter & Gamble International Operations SA Singapore BranchSingaporeSingapore

Personalised recommendations