, Volume 22, Issue 2, pp 211–220 | Cite as

Benthic phototrophic community from Kiran soda lake, south-eastern Siberia

  • Ekaterina I. BurganskayaEmail author
  • Irina A. Bryantseva
  • Vasil A. Gaisin
  • Denis S. Grouzdev
  • Maria S. Rysina
  • Darima D. Barkhutova
  • Roman V. Baslerov
  • Vladimir M. Gorlenko
  • Boris B. Kuznetsov
Original Paper


Phototrophic bacterial mats from Kiran soda lake (south-eastern Siberia) were studied using integrated approach including analysis of the ion composition of water, pigments composition, bacterial diversity and the vertical distribution of phototrophic microorganisms in the mats. Bacterial diversity was investigated using microscopic examination, 16S rRNA gene Illumina sequencing and culturing methods. The mats were formed as a result of decomposition of sedimented planktonic microorganisms, among which cyanobacteria of the genus Arthrospira predominated. Cyanobacteria were the largest part of phototrophs in the mats, but anoxygenic phototrophs were significant fraction. The prevailing species of the anoxygenic phototrophic bacteria are typical for soda lakes. The mats harbored aerobic anoxygenic phototrophic bacteria, purple sulfur and non-sulfur bacteria, as well as new filamentous phototrophic Chloroflexi. New strains of Thiocapsa sp. Kir-1, Ectothiorhodospira sp. Kir-2 and Kir-4, Thiorhodospira sp. Kir-3 and novel phototrophic Chloroflexi bacterium Kir15-3F were isolated and identified.


Cyanobacterial mats Soda lakes Alkaliphilic phototrophic communities Anoxygenic phototrophic bacteria 



The authors are grateful to the workers of the Laboratory of Microbiology, Institute of General and Experimental Biology, Siberian Branch, Russian Academy of Sciences, Ulan Ude, Russia for their help in the expedition to Kiran lake and to Samylina O.S. from Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences for her help in identification of cyanobacteria. The work was carried out using the scientific equipment of Core Research Facility “Bioengineering” with support from the Russian Foundation for Basic Research, project nos. 15-04- 07655 and 16-04- 00830, “Evolution of the organic world and planetary processes” program no. 2 of the Presidium of the Russian Academy of Sciences, Support of Scientific Schools grant of the President of the Russian Federation NSh 9888.2016.4 and project 0337-2017-0003.

Supplementary material

792_2017_989_MOESM1_ESM.pdf (2.4 mb)
Supplementary material 1 (PDF 2462 kb)


  1. Asao M, Pinkart HC, Madigan MT (2011) Diversity of extremophilic purple phototrophic bacteria in Soap Lake, a Central Washington (USA) Soda Lake. Environ Microbiol 13:2146–2157. CrossRefPubMedGoogle Scholar
  2. Baas-Becking LGM (1925) Studies on the sulphur bacteria. Ann Bot 39:613–650. CrossRefGoogle Scholar
  3. Béjà O, Suzuki MT, Heidelberg JF et al (2002) Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415:630–633. CrossRefPubMedGoogle Scholar
  4. Belila A, Abbas B, Fazaa I et al (2013) Sulfur bacteria in wastewater stabilization ponds periodically affected by the “red-water” phenomenon. Appl Microbiol Biotechnol 97:379–394. CrossRefPubMedGoogle Scholar
  5. Bryantseva IA, Tourova TP, Kovaleva OL et al (2010) Ectothiorhodospira magna sp. nov., a new large alkaliphilic purple sulfur bacterium. Microbiology 79:780–790. CrossRefGoogle Scholar
  6. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. CrossRefPubMedGoogle Scholar
  8. Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Egorova DV, Anan’ina LN, Kozyreva LP (2011) Physicochemical properties and microbial diversity of Lake Solenoe (Republic of Buryatia). Vestn Permsk Univ Ser Biol 1:55–60Google Scholar
  10. Gorlenko VM, Dubinina GA, Kuznetsov SI (1983) The ecology of aquatic microorganisms. Schweizerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  11. Gorlenko VM, Bryantseva IA, Rabold S et al (2009) Ectothiorhodospira variabilis sp. nov., an alkaliphilic and halophilic purple sulfur bacterium from Soda lakes. Int J Syst Evol Microbiol 59:658–664. CrossRefPubMedGoogle Scholar
  12. Gorlenko VM, Bryantseva IA, Kalashnikov AM et al (2014) CandidatusChloroploca asiatica” gen. nov., sp. nov., a new mesophilic filamentous anoxygenic phototrophic bacterium. Microbiology 83:838–848. CrossRefGoogle Scholar
  13. Grant WD, Sorokin DY (2011) Distribution and diversity of soda lake alkaliphiles. In: Horikoshi K (ed) Extremophiles handbook. Springer Japan, Tokyo, pp 27–54CrossRefGoogle Scholar
  14. Imhoff JF, Trüper HG (1981) Ectothiorhodospira abdelmalekii sp. nov., a new halophilic and alkaliphilic phototrophic bacterium. Zent Bakteriol Mikrobiol Hyg I Abt Orig C Allg Angew Ökol Mikrobiol 2:228–234. Google Scholar
  15. Imhoff JF, Sahl HG, Soliman GSH, Trüper HG (1979) The Wadi Natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiol J 1:219–234. CrossRefGoogle Scholar
  16. Jonkers HM, Ludwig R, De Wit R et al (2003) Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: “La Salada de Chiprana” (NE Spain). FEMS Microbiol Ecol 44:175–189. CrossRefPubMedGoogle Scholar
  17. Kalashnikov AM, Gaisin VA, Sukhacheva MV et al (2014) Anoxygenic phototrophic bacteria from microbial communities of Goryachinsk thermal spring (Baikal area, Russia). Microbiology 83:407–421. CrossRefGoogle Scholar
  18. Komárek J, Anagnostidis K (2005) Cyanoprokaryota 2. Teil Oscillatoriales. Elsevier, HeidelbergGoogle Scholar
  19. Kompantseva EI, Sorokin DY, Gorlenko VM, Namsaraev BB (2005) The phototrophic community found in lake Khilganta (an alkaline saline lake located in the Southeastern Transbaikal region). Microbiology 74:352–361. CrossRefGoogle Scholar
  20. Kompantseva EI, Bryantseva IA, Komova AV, Namsaraev BB (2007) The structure of phototrophic communities of soda lakes of the southeastern Transbaikal Region. Microbiology 76:211–219. CrossRefGoogle Scholar
  21. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175Google Scholar
  22. Lanzén A, Simachew A, Gessesse A et al (2013) Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of Ethiopian Soda Lakes. PLoS ONE 8:1–12. CrossRefGoogle Scholar
  23. Lukavský J (2002) Morphology, ultrastructure and taxonomy of Arthrospira (Spirulina) maxima and Arthrospira (Spirulina) platensis. In: Vonshak A (ed) Spirulina platensis (Arthrospira). Physiology, cell biology and biotechnology. Taylor & Francis, London, pp 1–15Google Scholar
  24. Namsaraev BB (ed) (2009) Saltish and salt lakes of Zabaikalie: hydrochemistry, biology. Publishing House of Buryat State University, Ulan-UdeGoogle Scholar
  25. Namsaraev BB, Gorlenko VM, Namsaraev ZB et al (2005) Field study guide for aquatic microbiology and hydrochemistry: a methodical manual. Publishing House of Buryat State University, Ulan-UdeGoogle Scholar
  26. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348PubMedPubMedCentralGoogle Scholar
  27. Overmann J, Fischer U, Pfennig N (1992) A new purple sulfur bacterium from saline littoral sediments, Thiorhodovibrio winogradskyi gen. nov. and sp. nov. Arch Microbiol 157:329–335. CrossRefGoogle Scholar
  28. Pfennig N, Lippert KD (1966) Über das vitamin B 12-bedürfnis phototropher Schwefelbakterien. Arch Microbiol 55:245–256. Google Scholar
  29. Pierson BK, Valdez D, Larsen M et al (1994) Chloroflexus-like organisms from marine and hypersaline environments: distribution and diversity. Photosynth Res 41:35–52. CrossRefPubMedGoogle Scholar
  30. Samylina OS, Sapozhnikov FV, Gainanova OY et al (2014) Algo-bacterial communities of the Kulunda steppe (Altai Region, Russia) Soda Lakes. Microbiology 83:849–860. CrossRefGoogle Scholar
  31. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Sorokin DY, Gorlenko VM, Namsaraev BB et al (2004) Prokaryotic communities of the north-eastern Mongolian soda lakes. Hydrobiologia 522:235–248. CrossRefGoogle Scholar
  33. Sorokin DY, Banciu HL, Muyzer G (2015) Functional microbiology of soda lakes. Curr Opin Microbiol 25:88–96. CrossRefPubMedGoogle Scholar
  34. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Tsyrenova DD, Bryanskaya AV, Namsaraev ZB, Akimov VN (2011) Taxonomic and ecological characterization of cyanobacteria from some brackish and saline lakes of Southern Transbaikal Region. Microbiology 80:216–227. CrossRefGoogle Scholar
  36. van Gemerden H, Mas J (1995) Ecology of purple sulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Press, Dordrecht, pp 49–85CrossRefGoogle Scholar
  37. Vlasova NA, Tkachuk VG, Tolstikhina NI (eds) (1962) Mineral water of South-East Siberia region. Publishing House of Academy of Sciences of the USSR, MoscowGoogle Scholar
  38. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zavarzin GA, Zhilina TN, Kevbrin VV (1999) Alkaliphilic microbial community and its functional diversity. Mikrobiologiya 68:579–599Google Scholar
  40. Zhilina TN, Zavarzina DG, Panteleeva AN et al (2012) Fuchsiella alkaliacetigena gen. nov., sp. nov., an alkaliphilic, lithoautotrophic homoacetogen from a soda lake. Int J Syst Evol Microbiol 62:1666–1673. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  • Ekaterina I. Burganskaya
    • 1
    Email author
  • Irina A. Bryantseva
    • 1
  • Vasil A. Gaisin
    • 1
  • Denis S. Grouzdev
    • 1
  • Maria S. Rysina
    • 2
  • Darima D. Barkhutova
    • 3
  • Roman V. Baslerov
    • 1
  • Vladimir M. Gorlenko
    • 1
  • Boris B. Kuznetsov
    • 1
  1. 1.Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyMoscowRussia
  3. 3.Institute of General and Experimental BiologyRussian Academy of SciencesUlan-UdeRussia

Personalised recommendations