, Volume 21, Issue 6, pp 1081–1090 | Cite as

Isolation and complete genome sequence of Halorientalis hydrocarbonoclasticus sp. nov., a hydrocarbon-degrading haloarchaeon

  • Dahe Zhao
  • Sumit Kumar
  • Jian Zhou
  • Rui Wang
  • Ming Li
  • Hua Xiang
Original Paper


Bioremediation in hypersaline environments is particularly challenging since the microbes that tolerate such harsh environments and degrade pollutants are quite scarce. Haloarchaea, however, due to their inherent ability to grow at high salt concentrations, hold great promise for remediating the contaminated hypersaline sites. This study aimed to isolate and characterize novel haloarchaeal strains with potentials in hydrocarbon degradation. A haloarchaeal strain IM1011 was isolated from Changlu Tanggu saltern near Da Gang Oilfield in Tianjin (China) by enrichment culture in hypersaline medium containing hexadecane. It could degrade 57 ± 5.2% hexadecane (5 g/L) in the presence of 3.6 M NaCl at 37 °C within 24 days. To get further insights into the mechanisms of petroleum hydrocarbon degradation in haloarchaea, complete genome (3,778,989 bp) of IM1011 was sequenced. Phylogenetic analysis of 16S rRNA gene, RNA polymerase beta-subunit (rpoB’) gene and of the complete genome suggested IM1011 to be a new species in Halorientalis genus, and the name Halorientalis hydrocarbonoclasticus sp. nov., is proposed. Notably, with insights from the IM1011 genome sequence, the involvement of diverse alkane hydroxylase enzymes and an intact β-oxidation pathway in hexadecane biodegradation was predicted. This is the first hexadecane-degrading strain from Halorientalis genus, of which the genome sequence information would be helpful for further dissecting the hydrocarbon degradation by haloarchaea and for their application in bioremediation of oil-polluted hypersaline environments.


Halophiles Haloarchaea Halorientalis Genome sequencing Hexadecane Hydrocarbon bioremediation 



This work was supported by grants from the National Natural Science Foundation of China (Grant no. 31330001) and the Hundred Talents Program of the Chinese Academy of Sciences (to H.X.). This work was also supported by Chinese Academy of Sciences visiting professorship for postdoctoral researchers to S.K. (Grant no. 2016PB047).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Al-Mailem DM, Sorkhoh NA, Al-Awadhi H, Eliyas M, Radwan SS (2010) Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14:321–328. doi: 10.1007/s00792-010-0312-9 CrossRefPubMedGoogle Scholar
  2. Al-Mailem D, Eliyas M, Khanafer M, Radwan S (2014) Culture-dependent and culture-independent analysis of hydrocarbonoclastic microorganisms indigenous to hypersaline environments in Kuwait. Microb Ecol 67:857–865. doi: 10.1007/s00248-014-0386-5 CrossRefPubMedGoogle Scholar
  3. Amoozegar MA, Makhdoumi-Kakhki A, Mehrshad M, Fazeli SAS, Spröer C, Ventosa A (2014) Halorientalis persicus sp. nov., an extremely halophilic archaeon isolated from a salt lake and emended description of the genus Halorientalis. Int J Syst Evol Microbiol 64:940–944. doi: 10.1099/ijs.0.058164-0 CrossRefPubMedGoogle Scholar
  4. Ashburner M et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. doi: 10.1038/75556 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bertrand JC, Almallah M, Acquaviva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett Appl Microbiol 11:260–263. doi: 10.1111/j.1472-765X.1990.tb00176.x CrossRefGoogle Scholar
  6. Castillo-Carvajal LC, Sanz-Martin JL, Barragan-Huerta BE (2014) Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review. Environ Sci Pollut Res Int 21:9578–9588. doi: 10.1007/s11356-014-3036-z CrossRefPubMedGoogle Scholar
  7. Chaisson MJ, Tesler G (2012) Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinform 13:238. doi: 10.1186/1471-2105-13-238 CrossRefGoogle Scholar
  8. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. doi: 10.1038/nmeth.2474 CrossRefPubMedGoogle Scholar
  9. Cuadros-Orellana S, Pohlschröder M, Durrant LR (2006) Isolation and characterization of halophilic archaea able to grow in aromatic compounds. Int Biodeterior Biodegrad 57:151–154. doi: 10.1016/j.ibiod.2005.04.005 CrossRefGoogle Scholar
  10. Cui H-L, Yang X, Gao X, Xu X-W (2011) Halobellus clavatus gen. nov., sp. nov. and Halorientalis regularis gen. nov., sp. nov., two new members of the family Halobacteriaceae. Int J Syst Evol Microbiol 61:2682–2689. doi: 10.1099/ijs.0.025841-0 CrossRefPubMedGoogle Scholar
  11. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641CrossRefPubMedPubMedCentralGoogle Scholar
  12. Díaz MP, Boyd KG, Grigson SJW, Burgess JG (2002) Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnol Bioeng 79:145–153. doi: 10.1002/bit.10318 CrossRefPubMedGoogle Scholar
  13. Edbeib MF, Wahab RA, Huyop F (2016) Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments. World J Microbiol Biotechnol 32:135. doi: 10.1007/s11274-016-2081-9 CrossRefPubMedGoogle Scholar
  14. Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:173. doi: 10.3389/fmicb.2014.00173 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. doi: 10.2307/2408678 CrossRefPubMedGoogle Scholar
  16. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics (Oxford, England) 30:1236–1240. doi: 10.1093/bioinformatics/btu031 CrossRefGoogle Scholar
  17. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280. doi: 10.1093/nar/gkh063 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. doi: 10.1093/nar/gkm160 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol 15:74–92. doi: 10.1159/000121323 CrossRefPubMedGoogle Scholar
  20. Lee I, Kim YO, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103. doi: 10.1099/ijsem.0.000760 CrossRefGoogle Scholar
  21. Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40:3671–3682. doi: 10.1016/j.watres.2006.08.027 CrossRefPubMedGoogle Scholar
  22. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964CrossRefPubMedPubMedCentralGoogle Scholar
  23. Magrane M, Consortium U (2011) UniProt knowledgebase: a hub of integrated protein data. Database J Biol Databases Curation 2011:bar009. doi: 10.1093/database/bar009 Google Scholar
  24. Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663. doi: 10.1007/s002530100701 CrossRefPubMedGoogle Scholar
  25. Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, Johnson J, Li K, Mobarry C, Sutton G (2008) Aggressive assembly of pyrosequencing reads with mates. Bioinformatics (Oxford, England) 24:2818–2824. doi: 10.1093/bioinformatics/btn548 CrossRefGoogle Scholar
  26. Nie Y, Chi CQ, Fang H, Liang JL, Lu SL, Lai GL, Tang YQ, Wu XL (2014) Diverse alkane hydroxylase genes in microorganisms and environments. Sci Rep 4:4968. doi: 10.1038/srep04968 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Oren A, Gurevich P, Azachi M, Henis Y (1992) Microbial degradation of pollutants at high salt concentrations. Biodegradation 3:387–398. doi: 10.1007/bf00129095 CrossRefGoogle Scholar
  28. Pruitt KD, Tatusova T, Brown GR, Maglott DR (2012) NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40:D130–D135. doi: 10.1093/nar/gkr1079 CrossRefPubMedGoogle Scholar
  29. Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11:2477–2490. doi: 10.1111/j.1462-2920.2009.01948.x CrossRefPubMedGoogle Scholar
  30. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. doi: 10.1093/oxfordjournals.molbev.a040454 PubMedGoogle Scholar
  31. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand JC, Cuny P (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14:225–231. doi: 10.1007/s00792-010-0301-z CrossRefPubMedGoogle Scholar
  33. Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wang W, Shao Z (2013) Enzymes and genes involved in aerobic alkane degradation. Front Microbiol 4:116. doi: 10.3389/fmicb.2013.00116 PubMedPubMedCentralGoogle Scholar
  35. Ward DM, Brock TD (1978) Hydrocarbon biodegradation in hypersaline environments. Appl Environ Microbiol 35:353–359PubMedPubMedCentralGoogle Scholar
  36. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2016) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol. doi: 10.1099/ijsem.0.001755 Google Scholar
  37. Yuan P-P, Yin S, Han D, Zhang W-J, Cui H-L (2015) Halorientalis brevis sp. nov., isolated from an Inland Salt Lake of China. Curr Microbiol 71:382–386. doi: 10.1007/s00284-015-0861-3 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • Dahe Zhao
    • 1
    • 2
  • Sumit Kumar
    • 1
  • Jian Zhou
    • 1
  • Rui Wang
    • 1
    • 3
  • Ming Li
    • 1
  • Hua Xiang
    • 1
    • 2
  1. 1.State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.College of Life SciencesUniversity of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan ProvinceChengdu Medical CollegeChengduChina

Personalised recommendations