, Volume 21, Issue 6, pp 1069–1080 | Cite as

Effect of environmental parameters on biodiversity of the fungal component in lithic Antarctic communities

  • Laura Selbmann
  • Silvano Onofri
  • Claudia Coleine
  • Pietro Buzzini
  • Fabiana Canini
  • Laura Zucconi
Original Paper


A wide sampling of rocks, colonized by microbial epi–endolithic communities, was performed along an altitudinal gradient from sea level to 3600 m asl and sea distance from the coast to 100 km inland along the Victoria Land Coast, Antarctica. Seventy-two rock samples of different typology, representative of the entire survey, were selected and studied using denaturing gradient gel electrophoresis to compare variation in fungal diversity according to environmental conditions along this altitudinal and sea distance transect. Lichenized fungi were largely predominant in all the samples studied and the biodiversity was heavily influenced even by minimal local variations. The n-MDS analysis showed that altitude and sea distance affect fungal biodiversity, while sandstone allows the communities to maintain high biodiversity indices. The Pareto-Lorenz curves indicate that all the communities analyzed are highly adapted to extreme conditions but scarcely resilient, so any external perturbation may have irreversible effects on these fragile ecosystems.


Antarctic Climate change DGGE Endolithic communities Fungi 



The authors thank the Italian National Programme of Antarctic Researches (PNRA) (projects 2013/AZ1.17; PNRA2014_00132; PNRA16_00006) for the financial support to the project. The Italian National Museum of Antarctica (MNA) is acknowledged for financial support to the Mycological section on the MNA, preserving rock Antarctic samples used in this study. Dr. Prof. Steven Emslie (University of North Carolina Wilmington) is kindly acknowledged for the accurate English revision of the text.

Supplementary material

792_2017_967_MOESM1_ESM.pdf (326 kb)
Supplementary material 1 (PDF 325 kb)
792_2017_967_MOESM2_ESM.pdf (151 kb)
Supplementary material 2 (PDF 150 kb)
792_2017_967_MOESM3_ESM.docx (12 kb)
Supplementary material 3 (DOCX 12 kb)


  1. Archer SDJ, de los Ríos A, Lee KC et al (2016) Endolithic microbial diversity in sandstone and granite from the McMurdo Dry Valleys, Antarctica. Polar Biol 40:997–1006CrossRefGoogle Scholar
  2. Arenz BE, Held BW, Jurgens JA et al (2006) Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol Biochem 38:3057–3064CrossRefGoogle Scholar
  3. Badali H, Carvalho VO, Vicente V et al (2009) Cladophialophora saturnica sp. nov., a new opportunistic species of Chaetothyriales revealed using molecular data. Med Mycol 47:51–66CrossRefPubMedGoogle Scholar
  4. Bell RA (1993) Cryptoendolithic algae of hot semiarid lands and deserts. J Phycol 29:133–139CrossRefGoogle Scholar
  5. Bomblies A, McKnight DM, Andrews ED (2001) Retrospective simulation of lake-level rise in Lake Bonney based on recent 21-year record: indication of recent climate change in the McMurdo Dry Valleys, Antarctica. J Paleolimnol 25:477–492CrossRefGoogle Scholar
  6. Buzzini P, Branda E, Goretti M et al (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241CrossRefPubMedGoogle Scholar
  7. Buzzini P, Turk M, Perini L, Turchetti B, Gunde-Cimerman N (2017) Yeasts in polar and sub-polar habitats. In: Buzzini P, Lachance MA, Yurkov AM (eds) Yeasts in natural ecosystems. Diversity. Springer, Berlin, Heidelberg, pp 331–365CrossRefGoogle Scholar
  8. Cámara B, Suzuki S, Nealson KH et al (2014) Ignimbrite textural properties as determinants of endolithic colonization patterns from hyper-arid Atacama Desert. Int Microbiol 17:235–247PubMedGoogle Scholar
  9. Cannone N, Seppelt R (2008) A preliminary floristic classification of southern and northern Victoria Land vegetation, continental Antarctica. Antarct Sci 20:553–562CrossRefGoogle Scholar
  10. Cary SC, McDonald IR, Barrett JE et al (2010) On the rocks: the microbiology of Antarctic dry valley soils. Nat Rev Microbiol 8:129–138CrossRefPubMedGoogle Scholar
  11. Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  12. Cockell CS, McKay CP, Omelon C (2003) Polar endoliths—an anti-correlation of climatic extremes and microbial biodiversity. Int J Astrobiol 1:305–310CrossRefGoogle Scholar
  13. Cockell CS, Bush T, Bryce C et al (2016) Habitability: a review. Astrobiology 16:89–117. doi: 10.1089/ast.2015.1295 CrossRefPubMedGoogle Scholar
  14. Coleine C, Selbmann L, Ventura S et al (2015) Fungal biodiversity in the Alpine Tarfala valley. Microorganisms 3:612–624CrossRefPubMedPubMedCentralGoogle Scholar
  15. Connel LB, Redman R, Craig S, Scorzetti G et al (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microbial Ecol 56:448–459CrossRefGoogle Scholar
  16. Connell LB, Rodriguez RR, Redman RS et al (2014) Cold-adapted yeasts in Antarctic deserts. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts. Springer, Berlin, pp 75–98CrossRefGoogle Scholar
  17. Cowan D, Tow L (2004) Endangered Antarctic environments. Annu Rev Microbiol 58:649–690. doi: 10.1146/annurev.micro.57.030502.090811 CrossRefPubMedGoogle Scholar
  18. Cowan D, Makhalanyane TP, Dennis PG et al (2014) Microbial ecology and biogeochemistry of continental Antarctic soils. Front Microbiol. doi: 10.3389/fmicb.2014.00154 (article 154) Google Scholar
  19. De Hoog GS, Vicente VA, Najafzadeh MJ et al (2011) Waterborne Exophiala species causing disease in cold-blooded animals. Persoonia 27:46–72CrossRefPubMedPubMedCentralGoogle Scholar
  20. De la Torre JR, Goebel BM, Friedmann E et al (2003) Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 69:3858–3867CrossRefPubMedPubMedCentralGoogle Scholar
  21. Egidi E, de Hoog GS, Isola D (2014) Phylogeny and taxonomy of meristematic rock-inhabiting black fungi in the dothidemycetes based on multi-locus phylogenies. Fungal Divers 65:127–165. doi: 10.1007/s13225-013-0277-y CrossRefGoogle Scholar
  22. Faizutdinova RN, Suzina NE, Duda VI et al (2005) Yeasts isolated from ancient permafrost. In: Castello JD, Rogers SO (eds) Life in Ancient Ice. Princeton University Press, Princeton, pp 118–126Google Scholar
  23. Farrell RL, Arenz BE, Duncan SM, Held BW et al (2011) Introduced and indigenous fungi of the Ross Island historic huts and pristine areas of Antarctica. Polar Biol 34:1669–1677. doi: 10.1007/s00300-011-1060-8 CrossRefGoogle Scholar
  24. Frenot Y, Chown SL, Whinam J et al (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev Camb Philos Soc 80:45–72CrossRefPubMedGoogle Scholar
  25. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053CrossRefPubMedGoogle Scholar
  26. Friedmann EI, Ocampo R (1976) Endolithic blue-green algae in dry valleys—primary producers in Antarctic desert ecosystem. Science 193:1247–1249CrossRefPubMedGoogle Scholar
  27. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9Google Scholar
  28. Hogg ID, Wall DH (2011) Global change and Antarctic terrestrial biodiversity. Polar Biol 34:1625–1627CrossRefGoogle Scholar
  29. Isola D, Selbmann L, de Hoog GS et al (2013) Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia 175:369–379. doi: 10.1007/s11046-013-9635-2 CrossRefPubMedGoogle Scholar
  30. Lee CK, Barbier BA, Bottos EM et al (2012) The inter-valley soil comparative survey: the ecology of dry valley edaphic microbial communities. ISME J 6:1046–1057. doi: 10.1038/ismej.2011.170 CrossRefPubMedGoogle Scholar
  31. Liu XZ, Wang QM, Göker M et al (2015) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147CrossRefPubMedGoogle Scholar
  32. Marzorati M, Wittebolle L, Boon N et al (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10:1571–1581CrossRefPubMedGoogle Scholar
  33. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedPubMedCentralGoogle Scholar
  34. Nienow JA, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 343–412Google Scholar
  35. Olech M, Chwedorzewska KJ (2011) Short note. The first appearance and establishment of an alien vascular plant in natural habitats on the forefield of a retreating glacier in Antarctica. Antarct Sci 23:153–154CrossRefGoogle Scholar
  36. Onofri S, Selbmann L, Zucconi L, de Hoog S et al (2007) Fungal associations at the cold edge of life. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Netherlands, pp 735–757CrossRefGoogle Scholar
  37. Onofri S, de la Torre R, de Vera JP et al (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12:508–516. doi: 10.1089/ast.2011.0736 CrossRefPubMedGoogle Scholar
  38. Onofri S, Vera JP, Zucconi L et al (2015) Survival of Antarctic cryptoendolithic fungi in simulated Martian conditions on-board the International Space Station. Astrobiology 15:1052–1059CrossRefPubMedGoogle Scholar
  39. Øvstedal D, Lewis Smith RI (2001) Lichens of Antarctica and South Georgia. In: Øvstedal DO, Lewis Smith RI (eds) A guide to their identification and ecology. Studies in polar research. Cambridge University, Cambridge, pp 4–5Google Scholar
  40. Pacelli C, Selbmann L, Zucconi L et al (2016) BIOMEX experiment: ultrastructural alterations, molecular damage and survival of the fungus Cryomyces antarcticus after the experiment verification tests. Orig Life Evol Biosph 47:187–202CrossRefPubMedGoogle Scholar
  41. Pacelli C, Selbmann L, Zucconi L et al (2017) Survival, DNA integrity, and ultrastructural damage in antarctic cryptoendolithic eukaryotic microorganisms exposed to ionizing radiation. Astrobiology 17:126–135CrossRefPubMedGoogle Scholar
  42. Pareto V (1897) Cours d’économie politique. Macmillan, LondonGoogle Scholar
  43. Pielou E (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144CrossRefGoogle Scholar
  44. Pointing SB, Chan Y, Lacap DC et al (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci USA 106:19964–19969CrossRefPubMedPubMedCentralGoogle Scholar
  45. Prenafeta-Boldú FX, Summerbell R, de Hoog GS (2006) Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS Microbiol Rev 30:109–130CrossRefPubMedGoogle Scholar
  46. Rao S, Chan Y, Lacap DC et al (2011) Low-diversity fungal assemblage in an Antarctic Dry Valleys soil. Polar Biol 35:567–574. doi: 10.1007/s00300-011-1102-2 CrossRefGoogle Scholar
  47. Selbmann L, de Hoog GS, Mazzaglia A et al (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic deserts. Stud Mycol 51:1–32Google Scholar
  48. Selbmann L, de Hoog GS, Zucconi L et al (2008) Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20CrossRefPubMedPubMedCentralGoogle Scholar
  49. Selbmann L, Isola D, Fenice F et al (2012) Potential extinction of Antarctic endemic fungal species as a consequence of global warming. Sci Tot Environ 438:127–134CrossRefGoogle Scholar
  50. Selbmann L, Grube M, Onofri S et al (2013) Antarctic epilithic lichens as niches for black meristematic fungi. Biology 2:784–797. doi: 10.3390/biology2020784 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Selbmann L, Zucconi L, Onofri S et al (2014) Taxonomic and phenotypic characterization of yeasts isolated from worldwide cold rock associated habitats. Fungal Biol 118:61–71CrossRefPubMedGoogle Scholar
  52. Selbmann L, Zucconi L, Isola D et al (2015) Rock black fungi: excellence in the extremes, from the Antarctic to space. Curr Genet 61:335–345. doi: 10.1007/s00294-014-0457-7 CrossRefPubMedGoogle Scholar
  53. Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  54. Simpson EH (1949) Measurement of diversity. Nature 163:688CrossRefGoogle Scholar
  55. Steig EJ, Schneider DP, Rutherford SD et al (2009) Warming of the Antarctic ice-sheet surface since the 1957 international geophysical year. Nature 457:459–462CrossRefPubMedGoogle Scholar
  56. Tao G, Liu ZY, Hyde KD et al (2008) Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae). Fungal Divers 33:101–122Google Scholar
  57. Turchetti B, Goretti M, Branda E et al (2013) Influence of abiotic variables on culturable yeast diversity in two distinct Alpine glaciers. FEMS Microbiol Ecol 86:327–340CrossRefPubMedGoogle Scholar
  58. Vincent W (2000) Evolutionary origins of Antarctic mycobiota: invasion, selection and endemism. Antarct Sci 12:374–385CrossRefGoogle Scholar
  59. Vishniac HS (1985) Cryptococcus friedmannii, a new species of yeast from the Antarctic. Mycologia 77:149–153CrossRefPubMedGoogle Scholar
  60. Vishniac HS (2006a) A multivariate analysis of soil yeasts isolated from a latitudinal gradient. Microb Ecol 52:90–103CrossRefPubMedGoogle Scholar
  61. Vishniac HS (2006b) Yeasts biodiversity in the Antarctic. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 420–440Google Scholar
  62. Walker JJ, Spear JR, Pace NR (2005) Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434:1011–1014CrossRefPubMedGoogle Scholar
  63. Wang QM, Yurkov AM, Göker M et al (2015) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:149–189CrossRefPubMedGoogle Scholar
  64. Wei ST, Lacap-Bugler DC, Lau MC et al (2016) Taxonomic and functional diversity of soil and hypolithic microbial communities in Miers Valley, McMurdo Dry Valleys, Antarctica. Front Microbiol. doi: 10.3389/fmicb.2016.01642 (article 1642) Google Scholar
  65. Zalar P, Gunde-Cimerman N (2014) Cold-adapted yeasts in Arctic habitats. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts. Springer, Berlin, pp 49–74CrossRefGoogle Scholar
  66. Zucconi L, Onofri S, Cecchini C et al (2016) Mapping the lithic colonization at the boundaries of life in Northern Victoria Land, Antarctica. Polar Biol 39:91–102CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • Laura Selbmann
    • 1
  • Silvano Onofri
    • 1
  • Claudia Coleine
    • 1
  • Pietro Buzzini
    • 2
  • Fabiana Canini
    • 1
  • Laura Zucconi
    • 1
  1. 1.Department of Ecological and Biological Sciences (DEB)University of TusciaViterboItaly
  2. 2.Department of Agricultural, Food and Environmental Sciences, Industrial Yeasts Collection DBVPGUniversity of PerugiaPerugiaItaly

Personalised recommendations