, Volume 21, Issue 6, pp 1049–1056 | Cite as

Biomineralisation of carbonate and sulphate by the halophilic bacterium Halomonas maura at different manganese concentrations

  • Almudena RivadeneyraEmail author
  • Alejandro Gonzalez-Martinez
  • Gabriela R. Portela
  • Daniel J. Martin-Ramos
  • Jesús Gonzalez-Lopez
  • María A. Rivadeneyra
Original Paper


The ability of Halomonas maura to bioprecipitate carbonate and sulphate crystals in solid media at different manganese concentrations has been demonstrated in this study for the first time. The precipitated minerals were studied by X-ray diffraction, scanning and transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The precipitated minerals were different based on the manganese concentration present in the medium and the incubation time. In the absence of manganese, H. maura formed pseudokutnahorite crystals; in the presence of manganese, the concentration in the culture medium determined the precipitation carbonates, such as rhodochrosite and dolomites. However, in the presence of low concentrations of manganese chloride (MnCl2) (5 g/l), kutnohorite crystals were also formed. Finally, when H. maura was grown in the presence of manganese, small amounts of sulphate crystals (such as bassanite and gypsum) were detected. Our study of the precipitated minerals showed an active role of H. maura in the biomineralisation process, but the geochemical conditions, and the manganese concentrations in particular, were clearly influential.


Biomineralisation Crystal formation Halomonas maura Halophiles Manganese 


  1. Aloisi G, Gloter A, Krüger M et al (2006) Nucleation of calcium carbonate on bacterial nanoglobules. Geology 34:1017–1020CrossRefGoogle Scholar
  2. Arias S, del Moral A, Ferrer MR et al (2003) Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 7:319–326CrossRefPubMedGoogle Scholar
  3. Bosak T, Souza-Egipsy V, Newman D (2004) A laboratory model of abiotic peloid formation. Geobiology 2:189–198CrossRefGoogle Scholar
  4. Bouchotroch S, Quesada E, del Moral A et al (2001) Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51:1625–1632CrossRefPubMedGoogle Scholar
  5. Cailleau G, Braissant O, Dupraz C et al (2005) Biologically induced accumulations of CaCO3 in orthox soils of Biga, Ivory Coast. Catena 59:1–17CrossRefGoogle Scholar
  6. Calvert S, Pedersen T (1996) Sedimentary geochemistry of manganese; implications for the environment of formation of manganiferous black shales. Econ Geol 91:36–47CrossRefGoogle Scholar
  7. Chekroun KB, Rodríguez-Navarro C, González-Muñoz MT et al (2004) Precipitation and growth morphology of calcium carbonate induced by Myxococcus xanthus: implications for recognition of bacterial carbonates. J Sediment Res 74:868–876CrossRefGoogle Scholar
  8. Deelman J (2003) Low-temperature formation of dolomite and magnesite. Compact Disc Publications, EindhovenGoogle Scholar
  9. Delgado G, Delgado R, Parraga J et al (2008) Precipitation of carbonates and phosphates by bacteria in extract solutions from a semi-arid saline soil. Influence of Ca2+ and Mg2+ concentrations and Mg2+/Ca2+ molar ratio in biomineralization. Geomicrobiol J 25:1–13CrossRefGoogle Scholar
  10. Ehrlich HL, Newman DK, Kappler A (2015) Ehrlich’s geomicrobiology. CRC Press, Boca RatonCrossRefGoogle Scholar
  11. Lee JH, Kennedy DW, Dohnalkova A et al (2011) Manganese sulfide formation via concomitant microbial manganese oxide and thiosulfate reduction. Environ Microbiol 13:3275–3288CrossRefPubMedGoogle Scholar
  12. Martin JD (2004) Using XPowder: a software package for Powder X-ray diffraction analysis. DL GR 1001:105Google Scholar
  13. Párraga J, Rivadeneyra M, Delgado R et al (1998) Study of biomineral formation by bacteria from soil solution equilibria. React Funct Polymers 36:265–271CrossRefGoogle Scholar
  14. Peckmann J, Paul J, Thiel V (1999) Bacterially mediated formation of diagenetic aragonite and native sulfur in Zechstein carbonates (Upper Permian, Central Germany). Sediment Geol 126:205–222CrossRefGoogle Scholar
  15. Politi Y, Arad T, Klein E et al (2004) Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306:1161–1164CrossRefPubMedGoogle Scholar
  16. Rivadeneyra MA, Párraga J, Delgado R et al (2004) Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities. FEMS Microbiol Ecol 48:39–46CrossRefPubMedGoogle Scholar
  17. Rivadeneyra MA, Martín-Algarra A, Sánchez-Navas A, Martín-Ramos D (2006) Carbonate and phosphate precipitation by Chromohalobacter marismortui. Geomicrobiol J 23:1–13CrossRefGoogle Scholar
  18. Rivadeneyra MA, Martín-Algarra A, Sánchez-Román M et al (2010) Amorphous Ca-phosphate precursors for Ca-carbonate biominerals mediated by Chromohalobacter marismortui. ISME J 4:922–932CrossRefPubMedGoogle Scholar
  19. Rivadeneyra A, Rivadeneyra MA, Escamilla CV et al (2016) The influence of salt concentration on the precipitation of magnesium calcite and calcium dolomite by Halomonas anticariensis. Expert Opin Environ Biol 5:2CrossRefGoogle Scholar
  20. Sánchez-Román M, Rivadeneyra MA, Vasconcelos C, McKenzie JA (2007) Biomineralization of carbonate and phosphate by moderately halophilic bacteria. FEMS Microbiol Ecol 61:273–284CrossRefPubMedGoogle Scholar
  21. Silva-Castro GA, Uad I, Rivadeneyra A et al (2013) Carbonate precipitation of bacterial strains isolated from sediments and seawater: formation mechanisms. Geomicrobiol J 30:840–850CrossRefGoogle Scholar
  22. Silva-Castro GA, Uad I, Gonzalez-Martinez A et al (2015) Bioprecipitation of calcium carbonate crystals by bacteria isolated from saline environments grown in culture media amended with seawater and real brine. BioMed Res Int 2015:Article ID 816102CrossRefGoogle Scholar
  23. Subow NN (1931) Oceanographical tables. USSR Oceanographic Institute Hydrometeorological Commission, Moscow, pp 208Google Scholar
  24. Torres AR, Martinez-Toledo M, Gonzalez-Martinez A et al (2013) Precipitation of carbonates by bacteria isolated from wastewater samples collected in a conventional wastewater treatment plant. Int J Environ Sci Technol 10:141–150CrossRefGoogle Scholar
  25. Vali H, Koster H (1986) Expanding behaviour, structural disorder, regular and random irregular interstratification of 2:1 layer-silicates studied by high-resolution images of transmission electron microscopy. Clay Miner 21:827–859CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • Almudena Rivadeneyra
    • 1
    Email author
  • Alejandro Gonzalez-Martinez
    • 2
  • Gabriela R. Portela
    • 3
  • Daniel J. Martin-Ramos
    • 4
  • Jesús Gonzalez-Lopez
    • 5
  • María A. Rivadeneyra
    • 5
  1. 1.Institute for NanoelectronicsTechnical University of MunichMunichGermany
  2. 2.Department of Built Environment, School of EngineeringUniversity of AaltoEspooFinland
  3. 3.Department of Agronomic Basic Sciences and BiologicalNational University of Buenos AiresBuenos AiresArgentina
  4. 4.Department of Mineralogy and Petrology, Faculty of SciencesUniversity of GranadaGranadaSpain
  5. 5.Department of Microbiology, Faculty of PharmacyUniversity of GranadaGranadaSpain

Personalised recommendations