Extremophiles

, Volume 21, Issue 6, pp 1119–1132 | Cite as

Halophilic viruses with varying biochemical and biophysical properties are amenable to purification with asymmetrical flow field-flow fractionation

  • Katri Eskelin
  • Mirka Lampi
  • Florian Meier
  • Evelin Moldenhauer
  • Dennis H. Bamford
  • Hanna M. Oksanen
Method Paper

Abstract

Viruses come in various shapes and sizes, and a number of viruses originate from extremities, e.g. high salinity or elevated temperature. One challenge for studying extreme viruses is to find efficient purification conditions where viruses maintain their infectivity. Asymmetrical flow field-flow fractionation (AF4) is a gentle native chromatography-like technique for size-based separation. It does not have solid stationary phase and the mobile phase composition is readily adjustable according to the sample needs. Due to the high separation power of specimens up to 50 µm, AF4 is suitable for virus purification. Here, we applied AF4 for extremophilic viruses representing four morphotypes: lemon-shaped, tailed and tailless icosahedral, as well as pleomorphic enveloped. AF4 was applied to input samples of different purity: crude supernatants of infected cultures, polyethylene glycol-precipitated viruses and viruses purified by ultracentrifugation. All four virus morphotypes were successfully purified by AF4. AF4 purification of culture supernatants or polyethylene glycol-precipitated viruses yielded high recoveries, and the purities were comparable to those obtained by the multistep ultracentrifugation purification methods. In addition, we also demonstrate that AF4 is a rapid monitoring tool for virus production in slowly growing host cells living in extreme conditions.

Keywords

Asymmetrical flow field-flow fractionation Virus purification Archaeal virus Macromolecular complex High ionic strength Halophilic virus 

Abbreviations

AF4

Asymmetrical flow field-flow fractionation

Dgeo

Geometric diameter

HCIV-1

Haloarcula californiae icosahedral virus 1

His1

His1 virus

h.p.i.

Hours post-infection

HRPV-1

Halorubrum pleomorphic virus 1

HVTV-1

Haloarcula vallismortis tailed virus 1

MALS

Multi-angle light scattering

MGM

Modified growth medium

MOI

Multiplicity of infection

MWCO

Molecular weight cut-off

PEG

Polyethylene glycol

PFU

Plaque forming units

RC

Regenerated cellulose

Rg

Radius of gyration

SW

Salt water

TEM

Transmission electron microscopy

VLP

Virus-like particle

Notes

Acknowledgements

The authors acknowledge the University of Helsinki and Academy of Finland (Grant 306833) for support provided to Centre for Virus and Macromolecular Complex Production (ICVIR, University of Helsinki), part of Instruct-FI, used in this study. This study was supported by Academy Professor (Academy of Finland) funding Grants 283072 and 255342 (D.H.B.). We also acknowledge Academy of Finland Grant 272507. The authors thank Päivi Suorsa, Helin Veskiväli and Sari Korhonen for excellent technical assistance, and Salla Välipakka for assistance in the His1 work.

Supplementary material

792_2017_963_MOESM1_ESM.pdf (199 kb)
Supplementary material 1 (PDF 199 kb)
792_2017_963_MOESM2_ESM.pdf (1 mb)
Supplementary material 2 (PDF 1025 kb)

References

  1. Atanasova NS, Roine E, Oren A, Bamford DH, Oksanen HM (2012) Global network of specific virus–host interactions in hypersaline environments. Environ Microbiol 14:426–440CrossRefPubMedGoogle Scholar
  2. Atanasova NS, Bamford DH, Oksanen HM (2015a) Haloarchaeal virus morphotypes. Biochimie 118:333–343CrossRefPubMedGoogle Scholar
  3. Atanasova NS, Demina TA, Buivydas A, Bamford DH, Oksanen HM (2015b) Archaeal viruses multiply: temporal screening in a solar saltern. Viruses 7:1902–1926CrossRefPubMedPubMedCentralGoogle Scholar
  4. Atanasova NS, Bamford DH, Oksanen HM (2016) Virus–host interplay in high salt environments. Environ microbiol Rep 8:431–444CrossRefPubMedGoogle Scholar
  5. Bath C, Dyall-Smith ML (1998) His1, an archaeal virus of the Fuselloviridae family that infects Haloarcula hispanica. J Virol 72:9392–9395PubMedPubMedCentralGoogle Scholar
  6. Benincasa M-A, Caldwell KD (2001) Flow field-flow fractionation of poly (ethylene oxide): effect of carrier ionic strength and composition. J Chromatogr A 925:159–169CrossRefPubMedGoogle Scholar
  7. Bousse T, Shore DA, Goldsmith CS, Hossain MJ, Jang Y, Davis CT, Donis RO, Stevens J (2013) Quantitation of influenza virus using field flow fractionation and multi-angle light scattering for quantifying influenza A particles. J Virol Methods 193:589–596CrossRefPubMedGoogle Scholar
  8. Bria CR, Skelly PW, Morse JR, Schaak RE, Williams SKR (2017) Semi-preparative asymmetrical flow field-flow fractionation: a closer look at channel dimensions and separation performance. J Chromatogr A 1499:149–157CrossRefPubMedGoogle Scholar
  9. Chen Y, Zhang Y, Quan C, Luo J, Yang Y, Yu M, Kong Y, Ma G, Su Z (2015) Aggregation and antigenicity of virus like particle in salt solution—a case study with hepatitis B surface antigen. Vaccine 33:4300–4306CrossRefPubMedGoogle Scholar
  10. Chuan YP, Fan YY, Lua L, Middelberg AP (2008) Quantitative analysis of virus-like particle size and distribution by field-flow fractionation. Biotechnol Bioeng 99:1425–1433CrossRefPubMedGoogle Scholar
  11. Demina TA, Pietilä MK, Svirskaite J, Ravantti JJ, Atanasova NS, Bamford DH, Oksanen HM (2016) Archaeal Haloarcula californiae icosahedral virus 1 highlights conserved elements in icosahedral membrane-containing DNA viruses from extreme environments. mBIO 7:e00699-16CrossRefPubMedPubMedCentralGoogle Scholar
  12. Demina TA, Pietilä MK, Svirskaite J, Ravantti JJ, Atanasova NS, Bamford DH, Oksanen HM (2017) HCIV-1 and other tailless icosahedral internal membrane-containing viruses of the family Sphaerolipoviridae. Viruses 9:32CrossRefPubMedCentralGoogle Scholar
  13. Dyall-Smith M (2009) The halohandbook l protocols for haloarchaeal genetics. http://www.haloarchaea.com/resources/halohandbook/. Accessed 10 June 2017
  14. Eskelin K, Lampi M, Meier F, Moldenhauer E, Bamford DH, Oksanen HM (2016) Asymmetric flow field flow fractionation methods for virus purification. J Chromatogr A 1469:108–119CrossRefPubMedGoogle Scholar
  15. Giddings JC, Yang F-S (1985) Colloid characterization by sedimentation field-flow fractionation. IV. Reinjection field-flow fractionation for polydisperse systems. J Colloid Interface Sci 105:55–64CrossRefGoogle Scholar
  16. Giddings JC, Yang F, Myers MN (1976) Flow-field-flow fractionation: a versatile new separation method. Science 193:1244–1245CrossRefPubMedGoogle Scholar
  17. Giddings JC, Ratanathanawongs SK, Moon MH (1991) Field-flow fractionation: a versatile technology for particle characterization in the size range 10−3 to 102 micrometers. KONA Powder Part J 9:200–217CrossRefGoogle Scholar
  18. Gil-Carton D, Jaakkola ST, Charro D et al (2015) Insight into the assembly of viruses with vertical single β-barrel major capsid proteins. Structure 23:1866–1877CrossRefPubMedGoogle Scholar
  19. Hong C, Pietilä MK, Fu CJ, Schmid MF, Bamford DH, Chiu W (2015) Lemon-shaped halo archaeal virus His1 with uniform tail but variable capsid structure. Proc Natl Acad Sci USA 112:2449–2454CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jäälinoja HT, Roine E, Laurinmäki P, Kivelä HM, Bamford DH, Butcher SJ (2008) Structure and host-cell interaction of SH1, a membrane-containing, halophilic euryarchaeal virus. Proc Natl Acad Sci USA 105:8008–8013CrossRefPubMedPubMedCentralGoogle Scholar
  21. King A, Adams M, Carstens E, Lefkowitz E (2012) Virus taxonomy. Ninth report of the international committee on taxonomy of viruses. Elsevier, OxfordGoogle Scholar
  22. Krupovic M, Quemin ER, Bamford DH, Forterre P, Prangishvili D (2014) Unification of the globally distributed spindle-shaped viruses of the archaea. J Virol 88:2354–2358CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lang R, Winter G, Vogt L, Zürcher A, Dorigo B, Schimmele B (2009) Rational design of a stable, freeze-dried virus-like particle-based vaccine formulation. Drug Dev Ind Pharm 35:83–97CrossRefPubMedGoogle Scholar
  24. Lee H, Williams SKR, Giddings JC (1998) Particle size analysis of dilute environmental colloids by flow field-flow fractionation using an opposed flow sample concentration technique. Anal Chem 70:2495–2503CrossRefPubMedGoogle Scholar
  25. Luk AW, Williams TJ, Erdmann S, Papke RT, Cavicchioli R (2014) Viruses of haloarchaea. Life (Basel) 4:681–715Google Scholar
  26. Messaud FA, Sanderson RD, Runyon JR, Otte T, Pasch H, Williams SKR (2009) An overview on field-flow fractionation techniques and their applications in the separation and characterization of polymers. Prog Polym Sci 34:351–368CrossRefGoogle Scholar
  27. Müller D, Cattaneo S, Meier F, Welz R, de Mello AJ (2015) Nanoparticle separation with a miniaturized asymmetrical flow field-flow fractionation cartridge. Front Chem 3:45CrossRefPubMedPubMedCentralGoogle Scholar
  28. Nestola P, Peixoto C, Silva RR, Alves PM, Mota JP, Carrondo MJ (2015) Improved virus purification processes for vaccines and gene therapy. Biotechnol Bioeng 112:843–857CrossRefPubMedGoogle Scholar
  29. Neubauer E, vd Kammer F, Hofmann T (2011) Influence of carrier solution ionic strength and injected sample load on retention and recovery of natural nanoparticles using flow field-flow fractionation. J Chromatogr A 1218:6763–6773CrossRefPubMedGoogle Scholar
  30. Nuttall SD, Dyall-Smith ML (1993) HF1 and HF2: novel bacteriophages of halophilic archaea. Virology 197:678–684CrossRefPubMedGoogle Scholar
  31. Olkkonen VM, Bamford DH (1989) Quantitation of the adsorption and penetration stages of bacteriophage φ6 infection. Virology 171:229–238CrossRefPubMedGoogle Scholar
  32. Oren A, Bratbak G, Heldal M (1997) Occurrence of virus-like particles in the Dead Sea. Extremophiles 1:143–149CrossRefPubMedGoogle Scholar
  33. Pietilä MK, Roine E, Paulin L, Kalkkinen N, Bamford DH (2009) An ssDNA virus infecting archaea: a new lineage of viruses with a membrane envelope. Mol Microbiol 72:307–319CrossRefPubMedGoogle Scholar
  34. Pietilä MK, Laurinavicius S, Sund J, Roine E, Bamford DH (2010) The single-stranded DNA genome of novel archaeal virus halorubrum pleomorphic virus 1 is enclosed in the envelope decorated with glycoprotein spikes. J Virol 84:788–798CrossRefPubMedGoogle Scholar
  35. Pietilä MK, Atanasova NS, Manole V, Liljeroos L, Butcher SJ, Oksanen HM, Bamford DH (2012) Virion architecture unifies globally distributed pleolipoviruses infecting halophilic archaea. J Virol 86:5067–5079CrossRefPubMedPubMedCentralGoogle Scholar
  36. Pietilä MK, Atanasova NS, Oksanen HM, Bamford DH (2013a) Modified coat protein forms the flexible spindle-shaped virion of haloarchaeal virus His1. Environ Microbiol 15:1674–1686CrossRefPubMedGoogle Scholar
  37. Pietilä MK, Laurinmäki P, Russell DA, Ko CC, Jacobs-Sera D, Butcher SJ, Bamford DH, Hendrix RW (2013b) Insights into head-tailed viruses infecting extremely halophilic archaea. J Virol 87:3248–3260CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pietilä MK, Laurinmäki P, Russell DA, Ko CC, Jacobs-Sera D, Hendrix RW, Bamford DH, Butcher SJ (2013c) Structure of the archaeal head-tailed virus HSTV-1 completes the HK97 fold story. Proc Natl Acad Sci USA 110:10604–10609CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pietilä MK, Demina TA, Atanasova NS, Oksanen HM, Bamford DH (2014) Archaeal viruses and bacteriophages: comparisons and contrasts. Trends Microbiol 22:334–344CrossRefPubMedGoogle Scholar
  40. Pietilä MK, Roine E, Sencilo A, Bamford DH, Oksanen HM (2016) Pleolipoviridae, a newly proposed family comprising archaeal pleomorphic viruses with single-stranded or double-stranded DNA genomes. Arch Virol 161:249–256CrossRefPubMedGoogle Scholar
  41. Porter K, Kukkaro P, Bamford JK, Bath C, Kivelä HM, Dyall-Smith ML, Bamford DH (2005) SH1: a novel, spherical halovirus isolated from an Australian hypersaline lake. Virology 335:22–33CrossRefPubMedGoogle Scholar
  42. Prangishvili D (2013) The wonderful world of archaeal viruses. Annu Rev Microbiol 67:565–585CrossRefPubMedGoogle Scholar
  43. Prestel H, Niessner R, Panne U (2006) Increasing the sensitivity of asymmetrical flow field-flow fractionation: slot outlet technique. Anal Chem 78:6664–6669CrossRefPubMedGoogle Scholar
  44. Ratanathanawongs SK, Williams DL (2006) Field-flow fractionation of proteins, polysaccharides, synthetic polymers, and supramolecular assemblies. J Sep Sci 29:1720–1732CrossRefGoogle Scholar
  45. Roda B, Zattoni A, Reschiglian P, Moon MH, Mirasoli M, Michelini E, Roda A (2009) Field-flow fractionation in bioanalysis: a review of recent trends. Anal Chim Acta 635:132–143CrossRefPubMedGoogle Scholar
  46. Schägger H, von Jagow G (1987) Tricine–sodium dodecyl sulfate–polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379CrossRefPubMedGoogle Scholar
  47. Somasundaram B, Chang C, Fan YY, Lim P-Y, Cardosa J, Lua L (2016) Characterizing enterovirus 71 and coxsackievirus A16 virus-like particles production in insect cells. Methods 95:38–45CrossRefPubMedGoogle Scholar
  48. Veesler D, Ng TS, Sendamarai AK et al (2013) Atomic structure of the 75 MDa extremophile Sulfolobus turreted icosahedral virus determined by CryoEM and X-ray crystallography. Proc Natl Acad Sci USA 110:5504–5509CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wagner M, Pietsch C, Tauhardt L, Schallon A, Schubert US (2014) Characterization of cationic polymers by asymmetric flow field-flow fractionation and multi-angle light scattering—a comparison with traditional techniques. J Chromatogr A 1325:195–203CrossRefPubMedGoogle Scholar
  50. Wahlund KG, Giddings JC (1987) Properties of an asymmetrical flow field-flow fractionation channel having one permeable wall. Anal Chem 59:1332–1339CrossRefPubMedGoogle Scholar
  51. Wei Z et al (2007) Biophysical characterization of influenza virus subpopulations using field flow fractionation and multiangle light scattering: correlation of particle counts, size distribution and infectivity. J Virol Methods 144:122–132CrossRefPubMedGoogle Scholar
  52. Yamamoto KR, Alberts BM, Benzinger R, Lawhorne L, Treiber G (1970) Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology 40:734–744CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • Katri Eskelin
    • 1
  • Mirka Lampi
    • 1
  • Florian Meier
    • 2
  • Evelin Moldenhauer
    • 2
  • Dennis H. Bamford
    • 1
  • Hanna M. Oksanen
    • 1
  1. 1.Department of BiosciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Postnova AnalyticsLandsbergGermany

Personalised recommendations