Skip to main content
Log in

Expression and characterization of a new heat-stable endo-type alginate lyase from deep-sea bacterium Flammeovirga sp. NJ-04

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Alginate lyases play an essential role in the production of oligosaccharides by degrading alginate polysaccharide. Although many alginate lyases from various microorganisms have been characterized, reports on alginate lyases with special characteristics and commercial potential are still rather rare. In this study, a new alginate lyase, FsAlgA, was cloned from the deep-sea marine bacterium Flammeovirga sp. NJ-04. The recombinant enzyme was purified on Ni-NTA sepharose and then characterized in detail. It exhibited the highest activity (3343.7 U/mg) at pH 7.0 and 50 °C. Notably, the FsAlgA retained more than 80% of its maximum activity after incubation at 50 °C for 30 min, suggesting that FsAlgA was a heat-stable alginate lyase. Additionally, FsAlgA possessed broad substrate specificity, showing high activities toward both poly β-d-mannuronate (polyM) and poly α-l-guluronate (polyG). Furthermore, the K m values of FsAlgA toward sodium alginate (0.48 mM) and polyG (0.94 mM) were lower than that toward polyM (1.42 mM). The TLC and ESI–MS analyses indicated that FsAlgA endolytically degraded alginate polysaccharide and released oligosaccharides with degree of polymerization (DP) of 2–5. Therefore, it may be a potent tool to produce alginate oligosaccharides with low DPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aarstad OA, Tøndervik A, Sletta H, Skjåk-Bræk G (2012) Alginate sequencing: an analysis of block distribution in alginates using specific alginate degrading enzymes. Biomacromolecules 13:106–116

    Article  CAS  PubMed  Google Scholar 

  • Ack B, Da SM, Kieckbusch TG (2012) Natamycin release from alginate/pectin films for food packaging applications. J Food Eng 110:18–25

    Article  Google Scholar 

  • Alipour M, Suntres ZE, Omri A (2009) Importance of DNase and alginate lyase for enhancing free and liposome encapsulated aminoglycoside activity against Pseudomonas aeruginosa. J Antimicrob Chemother 64:317–325

    Article  CAS  PubMed  Google Scholar 

  • Alkawash MA, Soothill JS, Schiller NL (2006) Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS 114:131–138

    Article  CAS  PubMed  Google Scholar 

  • Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633

    Article  CAS  PubMed  Google Scholar 

  • Dong S, Wei TD, Chen XL, Li CY, Wang P, Xie BB, Qin QL, Zhang XY, Pang XH, Zhou BC, Zhang YZ (2014) Molecular insight into the role of the N-terminal extension in the maturation, substrate recognition, and catalysis of a Bacterial Alginate Lyase from Polysaccharide Lyase Family 18. J Biol Chem 289:29558–29569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan G, Han F, Yu W (2009) Cloning, sequence analysis, and expression of gene alyPI encoding an alginate lyase from marine bacterium Pseudoalteromonas sp. CY24. Can J Microbiol 55:1113–1118

    Article  CAS  PubMed  Google Scholar 

  • Ertesvåg H, Erlien F, Skjåkbraek G, Rehm BH, Valla S (1998) Biochemical properties and substrate specificities of a recombinantly produced Azotobacter vinelandii alginate lyase. J Bacteriol 180:3779–3784

    PubMed  PubMed Central  Google Scholar 

  • Evangelista G, Falasca P, Ruggiero I, Masullo M, Raimo G (2009) Molecular and functional characterization of polynucleotide phosphorylase from the antarctic eubacterium Pseudoalteromonas haloplanktis. Protein Peptide Lett 16:999–1005

    Article  CAS  Google Scholar 

  • Gacesa P (1992) Enzymic degradation of alginates. Int J Biochem 24:545–552

    Article  CAS  PubMed  Google Scholar 

  • Han W, Gu J, Cheng Y, Liu H, Li Y, Li F (2016) Novel alginate lyase (Aly5) from a polysaccharide-degrading marine bacterium, Flammeovirga sp. strain MY04: effects of module truncation on biochemical characteristics. Alginate degradation patterns, and oligosaccharide-yielding properties. Appl Environ Microbiol 82:864–874

    Google Scholar 

  • Hata M, Kumagai Y, Rahman MM, Chiba S, Tanaka H, Inoue A, Ojima T (2009) Comparative study on general properties of alginate lyases from some marine gastropod mollusks. Fish Sci 75:755–763

    Article  CAS  Google Scholar 

  • Inoue A, Kagaya M, Ojima T (2008) Preparation of protoplasts from Laminaria japonica using native and recombinant abalone alginate lyases. J Appl Phycol 20:633–640

    Article  CAS  Google Scholar 

  • Inoue A, Takadono K, Nishiyama R, Tajima K, Kobayashi T, Ojima T (2014) Characterization of an alginate lyase, FlAlyA, from Flavobacterium sp. strain UMI-01 and its expression in Escherichia coli. Mar Drugs 12:4693–4712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue A, Mashino C, Uji T, Saga N, Mikami K, Ojima T (2015) Characterization of an eukaryotic PL-7 alginate lyase in the marine red alga Pyropia yezoensis. Curr Biotechnol 4(3):240–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue A, Anraku M, Nakagawa S, Ojima T (2016a) Discovery of a novel alginate lyase from Nitratiruptor sp. SB155-2 thriving at deep-sea hydrothermal vents and identification of the residues responsible for its heat stability. J Biol Chem 291:15551–15563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue A, Nishiyama R, Ojima T (2016b) The alginate lyases FlAlyA, FlAlyB, FlAlyC, and FlAlex from Flavobacterium sp. UMI-01 have distinct roles in the complete degradation of alginate. Algal Res 19:355–362

    Article  Google Scholar 

  • Iwamoto M et al (2005) Structure–activity relationship of alginate oligosaccharides in the induction of cytokine production from RAW264.7 cells. FEBS Lett 579:4423–4429

    Article  CAS  PubMed  Google Scholar 

  • Kawada A, Hiura N, Tajima S, Takahara H (1999) Alginate oligosaccharides stimulate VEGF-mediated growth and migration of human endothelial cells. Arch Dermatol Res 291:542–547

    Article  CAS  PubMed  Google Scholar 

  • Kim HT et al (2012) Characterization of a recombinant endo-type alginate lyase (Alg7D) from Saccharophagus degradans. Biotechnol Lett 34:1087–1092

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Uchimura K, Miyazaki M, Nogi Y, Horikoshi K (2009) A new high-alkaline alginate lyase from a deep-sea bacterium Agarivorans sp. Extremophiles 13:121–129

    Article  CAS  PubMed  Google Scholar 

  • Lamppa JW, Griswold KE (2013) Alginate lyase exhibits catalysis-independent biofilm dispersion and antibiotic synergy. Antimicrob Agents Chemother 57:137–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombard V, Bernard T, Rancurel C, Brumer H, Coutinho PM, Henrissat B (2010) A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem J 432:437–444

    Article  CAS  PubMed  Google Scholar 

  • Miyake O, Ochiai A, Hashimoto W, Murata K (2004) Origin and diversity of alginate lyases of families PL-5 and -7 in Sphingomonas sp. strain A1. J Bacteriol 186:2891–2896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin JW, Choi SH, Dong EK, Kim HS, Lee JH, Lee IS, Lee EY (2011) Heterologous expression of an alginate lyase from Streptomyces sp. ALG-5 in Escherichia coli and its use for preparation of the magnetic nanoparticle-immobilized enzymes. Bioprocess Biosyst Eng 34:113–119

    Article  CAS  PubMed  Google Scholar 

  • Smidsrød O, SkjåkBræk G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    Article  PubMed  Google Scholar 

  • Srimathi S, Jayaraman G, Feller G, Danielsson B, Narayanan PR (2007) Intrinsic halotolerance of the psychrophilic α-amylase from Pseudoalteromonas haloplanktis. Extremophiles 11:505–515

    Article  CAS  PubMed  Google Scholar 

  • Swift SM, Hudgens JW, Heselpoth RD, Bales PM, Nelson DC (2014) Characterization of AlgMsp, an alginate lyase from Microbulbifer sp. 6532A. PLoS One 9:e112939–e112939

    Article  PubMed  PubMed Central  Google Scholar 

  • Takeuchi T, Nibu Y, Murata K, Yoshida S, Kusakabe I (1997) Characterization of a novel alginate lyase from Flavobacterium multivolum K-11. Food Sci Technol Int Tokyo 3:388–392

    Article  CAS  Google Scholar 

  • Thomas F et al (2013) Comparative characterization of two marine alginate lyases from Zobellia galactanivorans reveals distinct modes of action and exquisite adaptation to their natural substrate. J Biol Chem 288:23021–23037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi VD, Bharadwaj A, Varunjikar MS, Singha AK, Upadhyay P, Gautam K, Phale PS (2017) Insights into metabolism and sodium chloride adaptability of carbaryl degrading halotolerant Pseudomonas sp. strain C7. Arch Microbiol 907:907–916

    Article  Google Scholar 

  • Tusi SK, Khalaj L, Ashabi G, Kiaei M, Khodagholi F (2011) Alginate oligosaccharide protects against endoplasmic reticulum- and mitochondrial-mediated apoptotic cell death and oxidative stress. Biomaterials 32:5438–5458

    Article  CAS  PubMed  Google Scholar 

  • Wong TY, Preston LA, Schiller NL (2000) ALGINATE LYASE: review of major sources and enzyme characteristics, structure–function analysis, biological roles, and applications. Microbiology 54:289–340

    Article  CAS  Google Scholar 

  • Yagi H, Fujise A, Itabashi N, Ohshiro T (2016) Purification and characterization of a novel alginate lyase from the marine bacterium Cobetia sp. NAP1 isolated from brown algae. Biosci Biotechnol Biochem 80:1–9

    Article  Google Scholar 

  • Zhang H, Wang ZY, Yang L, Yang X, Wang X, Zhang Z (2011) In vitro antioxidant activities of sulfated derivatives of polysaccharides extracted from Auricularia auricular. Int J Mol Sci 12:3288–3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y et al (2017) Identification and characterization of a novel salt-tolerant esterase from the deep-sea sediment of the South China sea. Front Microbiol 8:441

    PubMed  PubMed Central  Google Scholar 

  • Zhu BW, Yin H (2015) Alginate lyase: review of major sources and classification, properties, structure–function analysis and applications. Bioengineered 6:125–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu B, Tan H, Qin Y, Xu Q, Du Y, Yin H (2015) Characterization of a new endo-type alginate lyase from Vibrio sp. W13. Int J Biol Macromol 75:1385–1391

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 31601410), National Basic Research Program of China (973 Program) (2013CB733503), Key Research and Development Program of Jiangsu Province (BE2015305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benwei Zhu.

Additional information

Communicated by A. Driessen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Ni, F., Sun, Y. et al. Expression and characterization of a new heat-stable endo-type alginate lyase from deep-sea bacterium Flammeovirga sp. NJ-04. Extremophiles 21, 1027–1036 (2017). https://doi.org/10.1007/s00792-017-0962-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-017-0962-y

Keywords

Navigation