Advertisement

Extremophiles

, Volume 21, Issue 6, pp 1017–1025 | Cite as

Wallemia peruviensis sp. nov., a new xerophilic fungus from an agricultural setting in South America

  • Jorge R. Díaz-Valderrama
  • Hai D. T. Nguyen
  • M. Catherine Aime
Original Paper

Abstract

We obtained four isolates of the xerophilic genus Wallemia from the rooftop of a house made of red brick and cement in an agronomic field planted with common beans and maize in Pachacamac, Lima, Peru. Bayesian phylogenetic analysis with rDNA gene sequences showed these Wallemia isolates form a distinct and strongly supported clade closely related to W. hederae. We examined the macro and micromorphology, growth rate and production of exudates of isolates on media containing different amounts of glucose and NaCl (water activity from 0.9993 to 0.8480). Their chaotropic and kosmotropic tolerance were tested on media with multiple molar concentrations of MgCl2 and MgSO4 (water activity from 0.9880 to 0.7877). Isolates are xerophilic and halotolerant, growing on 17% NaCl-supplemented media (water activity = 0.8480). Maximum concentrations of MgCl2 and MgSO4 at which growth was observed were 1.7 and 3.5 M, respectively. Isolates were shown to represent a novel species, described as Wallemia peruviensis sp. nov. In contrast to W. hederae, W. peruviensis does not produce exudates on malt extract agar + 17% NaCl media. An updated dichotomous key to Wallemia species is provided. This is the first new species of Wallemia described from South America and the first association of a Wallemia species with an agricultural environment on this continent.

Keywords

Air-borne fungi Biodiversity Chaotolerance Halotolerance Osmotic stress Wallemiomycetes Xerotolerance 

Abbreviations

aw

Water activity

ITS

Internal transcribed spacer region rDNA

SSU

Small subunit 18S rDNA

MCMC

Markov chain Monte Carlo

MEA

Malt extract agar

MYA

Malt yeast extract agar

Notes

Acknowledgements

We thank David Aime for facilitating sampling in Peru and Daniel Reátegui for collecting isolates. We also thank Beth Kennedy for testing selective media, John Klimek for culture maintenance, Marlon Rodríguez for preparing some of the media used in this study, and rest of the members of the Aime lab for constructive comments on the manuscript. Special thanks to Dr. Jozef Kokini at the Department of Food Science, Purdue University, for facilitating the use of the aw-meter, and to Luis Maldonado and José Bonilla for technical help. Finally, we thank SERFOR, Peru for granting permits to collect and work with fungal taxa from the country and two anonymous reviewers for suggesting improvements to this manuscript.

Supplementary material

792_2017_960_MOESM1_ESM.pdf (215 kb)
Online Resource 1 Media used in this study (PDF 215 kb)
792_2017_960_MOESM2_ESM.pdf (140 kb)
Online Resource 2 Bayesian phylogenetic trees of ITS and SSU datasets of Wallemia isolates (PDF 139 kb)
792_2017_960_MOESM3_ESM.pdf (221 kb)
Online Resource 3 Colony characteristics of Wallemia peruviensis at 15 days of growth (PDF 221 kb)
792_2017_960_MOESM4_ESM.docx (2.4 mb)
Online Resource 4 Growth of Wallemia peruviensis under kosmotropic (MgSO4) and chaotropic (MgCl2) solutes at different molar concentrations (DOCX 2456 kb)

References

  1. Cole GT, Samson RA (1979) Patterns of development in conidial fungi. Pitman, LondonGoogle Scholar
  2. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. doi: 10.1038/nmeth.2109 CrossRefPubMedPubMedCentralGoogle Scholar
  3. de Hoog S, Zalar P, van den Ende BG, Gunde-Cimerman N (2005) Relation of halotolerance to human-pathogenicity in the fungal tree of life: an overview of ecology and evolution under stress. In: Gunde-Cimerman N, Oren A, Plemenitas A (eds) Adaptation to life at high salt-concentration in Archaea, Bacteria and Eukarya. Springer, Dordrecht, pp 373–395Google Scholar
  4. de Mendiburu Delgado F (2009) Una herramienta de análisis estadístico para la investigación agrícola. Master’s Thesis, Universidad Nacional de Ingeniería, Lima, PeruGoogle Scholar
  5. Frank M, Kingston E, Jeffery JC, Moss MO, Murray M, Simpson TJ, Sutherland A (1999) Walleminol and walleminone, novel caryophyllenes from the toxigenic fungus Wallemia sebi. Tetrahedron Lett 40:133–136. doi: 10.1016/S0040-4039(98)80039-7 CrossRefGoogle Scholar
  6. Fröhlich-Nowoisky J, Pickersgill DA, Després VR, Pöschl U (2009) High diversity of fungi in air particulate matter. Proc Natl Acad Sci USA 106:12814–12819. doi: 10.1073/pnas.0811003106 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. doi: 10.1111/j.1365-294X.1993.tb00005.x CrossRefPubMedGoogle Scholar
  8. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224. doi: 10.1093/molbev/msp259 CrossRefPubMedGoogle Scholar
  9. Guarro J, Gugnani HC, Sood N, Batra R, Mayayo E, Gené J, Kakkar S (2008) Subcutaneous phaeohyphomycosis caused by Wallemia sebi in an immunocompetent host. J Clin Microbiol 46:1129–1131. doi: 10.1128/JCM.01920-07 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. doi: 10.1080/10635150390235520 CrossRefPubMedGoogle Scholar
  11. Gunde-Cimerman N, Ramos J, Plemenitas A (2009) Halotolerant and halophilic fungi. Mycol Res 113:1231–1241. doi: 10.1016/j.mycres.2009.09.002 CrossRefPubMedGoogle Scholar
  12. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  13. Hanhela R, Louhelainen K, Pasanen A-L (1995) Prevalence of microfungi in Finnish cow barns and some aspects of the occurrence of Wallemia sebi and Fusaria. Scand J Work Environ Health 21:223–228CrossRefPubMedGoogle Scholar
  14. Jančič S, Nguyen HDT, Frisvad JC, Zalar P, Schroers H-J, Seifert KA, Gunde-Cimerman N (2015) A taxonomic revision of the Wallemia sebi species complex. PLoS One 10:e0125933. doi: 10.1371/journal.pone.0125933 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jančič S, Frisvad JC, Kocev D, Gostinčar C, Džeroski S, Gunde-Cimerman N (2016a) Production of secondary metabolites in extreme environments: food- and airborne Wallemia spp. produce toxic metabolites at hypersaline conditions. PLoS One 11:e0169116. doi: 10.1371/journal.pone.0169116 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jančič S, Zalar P, Kocev D, Schroers H-J, Džeroski S, Gunde-Cimerman N (2016b) Halophily reloaded: new insights into the extremophilic life-style of Wallemia with the description of Wallemia hederae sp. nov. Fungal Divers 76:97–118. doi: 10.1007/s13225-015-0333-x CrossRefGoogle Scholar
  17. Johan-Olsen O (1887) Om sop på klipfisk den såkaldte mid. Christ Vidensk Forh 12:1–20Google Scholar
  18. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi: 10.1093/molbev/mst010 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Matheny PB, Gossmann JA, Zalar P, Kumar TKA, Hibbett DS (2006) Resolving the phylogenetic position of the Wallemiomycetes: an enigmatic major lineage of Basidiomycota. Can J Bot 84:1794–1805. doi: 10.1139/b06-128 CrossRefGoogle Scholar
  20. Munsell Color Company (1954) Munsell soil color charts, 1954th edn. Munsell Color Company, BaltimoreGoogle Scholar
  21. Nguyen HDT, Jančič S, Meijer M, Tanney JB, Zalar P, Gunde-Cimerman N, Seifert KA (2015) Application of the phylogenetic species concept to Wallemia sebi from house dust and indoor air revealed by multi-locus genealogical concordance. PLoS One 10:e0120894. doi: 10.1371/journal.pone.0120894 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Padamsee M, Kumar TKA, Riley R, Binder M, Boyd A, Calvo AM, Furukawa K, Hesse C, Hohmann S, James TY, LaButti K, Lapidus A, Lindquist E, Lucas S, Miller K, Shantappa S, Grigoriev IV, Hibbett DS, McLaughlin DJ, Spatafora JW, Aime MC (2012) The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction. Fungal Genet Biol 49:217–226. doi: 10.1016/j.fgb.2012.01.007 CrossRefPubMedGoogle Scholar
  23. Pitt JI (1975) Xerophilic fungi and the spoilage of foods of plant origin. In: Duckworth RB (ed) Water relations of food. Academic Press, London, pp 273–307CrossRefGoogle Scholar
  24. Pitt JI, Hocking AD (2009) Fungi and food spoilage, 3rd edn. Springer, SydneyCrossRefGoogle Scholar
  25. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi: 10.1093/sysbio/sys029 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (2000) Introduction to food- and airborne fungi, 6th edn. Centraalbureau voor Schimmelcultures, WageningenGoogle Scholar
  27. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi: 10.1038/nmeth.2089 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Takahashi T (1997) Airborne fungal colony-forming units in outdoor and indoor environments in Yokohama, Japan. Mycopathologia 139:23–33. doi: 10.1023/A:1006831111595 CrossRefPubMedGoogle Scholar
  29. Takatori K, Lee H-J, Ohta T, Shida T (1994) Composition of the house dust mycoflora in Japanese houses. In: Samson RA, Flannigan B, Flannigan ME, Verhoeff AP, Adan OCG, Hoekstra ES (eds) Health implications of fungi in indoor environments. Elsevier, Berlin, pp 93–101Google Scholar
  30. von Arx JA (1970) The genera of fungi sporulating in pure culture, 1st edn. Gantner Verlag KG, LeutershausenGoogle Scholar
  31. Walther G, Garnica S, Weiß M (2005) The systematic relevance of conidiogenesis modes in the gilled Agaricales. Mycol Res 109:525–544. doi: 10.1017/S0953756205002868 CrossRefPubMedGoogle Scholar
  32. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  33. Wilson K, Padhye AA, Carmichael JW (1969) Antifungal activity of Wallemia ichthyophaga (=Hemispora stellata Vuill.=Torula epizoa Corda). Antonie Van Leeuwenhoek 35:529–532. doi: 10.1007/BF02219170 CrossRefPubMedGoogle Scholar
  34. Wood GM, Mann PJ, Lewis DF, Reid WJ, Moss MO (1990) Studies on a toxic metabolite from the mould Wallemia. Food Addit Contam 7:69–77. doi: 10.1080/02652039009373822 CrossRefPubMedGoogle Scholar
  35. Zajc J, Zalar P, Sepcic K, Gunde-Cimerman N (2011) Xerophilic fungal genus Wallemia: bioactive inhabitants of marine solar salterns and salty food. Zb Matice Srp za Prir Nauk 120:7–18. doi: 10.2298/ZMSPN1120007Z CrossRefGoogle Scholar
  36. Zajc J, Liu Y, Dai W, Yang Z, Hu J, Gostinčar C, Gunde-Cimerman N (2013) Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genom 14:617–630. doi: 10.1186/1471-2164-14-617 CrossRefGoogle Scholar
  37. Zajc J, Džeroski S, Kocev D, Oren A, Sonjak S, Tkavc R, Gunde-Cimerman N (2014a) Chaophilic or chaotolerant fungi: a new category of extremophiles? Front Microbiol 5:1–15. doi: 10.3389/fmicb.2014.00708 CrossRefGoogle Scholar
  38. Zajc J, Kogej T, Galinski EA, Ramos J, Gunde-Cimermana N (2014b) Osmoadaptation strategy of the most halophilic fungus, Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl Environ Microbiol 80:247–256. doi: 10.1128/AEM.02702-13 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zalar P, de Hoog GS, Schroers H-J, Frank JM, Gunde-Cimerman N (2005) Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie Van Leeuwenhoek 87:311–328. doi: 10.1007/s10482-004-6783-x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Department of Botany and Plant PathologyPurdue UniversityWest LafayetteUSA
  2. 2.Ottawa Research and Development Centre, Agriculture and Agri-FoodOttawaCanada

Personalised recommendations