Extremophiles

, Volume 21, Issue 6, pp 981–991 | Cite as

Avoidance of protein oxidation correlates with the desiccation and radiation resistance of hot and cold desert strains of the cyanobacterium Chroococcidiopsis

  • Claudia Fagliarone
  • Claudia Mosca
  • Ilaria Ubaldi
  • Cyprien Verseux
  • Mickael Baqué
  • Annick Wilmotte
  • Daniela Billi
Original Paper
  • 178 Downloads

Abstract

To investigate the relationship between desiccation and the extent of protein oxidation in desert strains of Chroococcidiopsis a selection of 10 isolates from hot and cold deserts and the terrestrial cyanobacterium Chroococcidiopsis thermalis sp. PCC 7203 were exposed to desiccation (air-drying) and analyzed for survival. Strain CCMEE 029 from the Negev desert and the aquatic cyanobacterium Synechocystis sp. PCC 6803 were further investigated for protein oxidation after desiccation (drying over silica gel), treatment with H2O2 up to 1 M and exposure to γ-rays up to 25 kGy. Then a selection of desert strains of Chroococcidiopsis with different survival rates after prolonged desiccation, as well as Synechocystis sp. PCC 6803 and Chroococcidiopsis thermalis sp. PCC 7203, were analyzed for protein oxidation after treatment with 10 and 100 mM of H2O2. Results suggest that in the investigated strains a tight correlation occurs between desiccation and radiation tolerance and avoidance of protein oxidation.

Keywords

Cyanobacteria Desiccation Radiation Anhydrobiosis Oxidative stress DNA damage 

Notes

Acknowledgements

This work was supported by the Italian Space Agency (ASI 2013-053-R.0; ASI 2013-051-R.0) and by the National Antarctic Research Program (PNRA16/00101; PNRA2013/AZ1.17).

References

  1. Baqué M, Viaggiu E, Scalzi G, Billi D (2013a) Endurance of the endolithic desert cyanobacterium Chroococcidiopsis under UVC radiation. Extremophiles 17:161–169CrossRefPubMedGoogle Scholar
  2. Baqué M, Scalzi G, Rabbow E, Rettberg P, Billi D (2013b) Biofilm and planktonic lifestyles differently support the resistance of the desert cyanobacterium Chroococcidiopsis under space and Martian simulations. Orig Life Evol Biosph 43:377–389CrossRefPubMedGoogle Scholar
  3. Billi D (2009) Subcellular integrities in Chroococcidiopsis sp. CCMEE 029 survivors after prolonged desiccation revealed by molecular probes and genome stability assays. Extremophiles 13:49–57CrossRefPubMedGoogle Scholar
  4. Billi D (2012) Anhydrobiotic rock-inhabiting cyanobacteria: potential for astrobiology and biotechnology. In: Stan-Lotter H, Fendrihan F (eds) Adaption of microbial life to environmental extremes. Novel research results and application. Springer-Verlag, Wien, pp 119–132CrossRefGoogle Scholar
  5. Billi D, Grilli Caiola M, Paolozzi L, Ghelardini P (1998) A method for DNA extraction from the desert cyanobacterium Chroococcidiopsis and its application to identification of ftsZ. Appl Environ Microbiol 64:4053–4056PubMedPubMedCentralGoogle Scholar
  6. Billi D, Friedmann EI, Hofer KG, Caiola MG, Ocampo-Friedmann R (2000) Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl Environ Microbiol 66:1489–1492CrossRefPubMedPubMedCentralGoogle Scholar
  7. Billi D, Viaggiu E, Cockell CS, Rabbow E, Horneck G, Onofri S (2011) Damage escape and repair in dried Chroococcidiopsis spp. from hot and cold deserts exposed to simulated space and martian conditions. Astrobiology 11:65–73CrossRefPubMedGoogle Scholar
  8. Billi D, Baqué M, Verseux C, Rothschild LJ, de Vera J-P (2017) Desert cyanobacteria—potential for space and earth applications. In: Stan-Lotter H, Fendrihan F (eds) Adaption of microbial life to environmental extremes. Novel research results and application, 2nd edn. Springer-Verlag, Wien, pp 133–146CrossRefGoogle Scholar
  9. Chong CW, Convey P, Pearce DA, Tan KP (2012) Assessment of soil bacterial communities on Alexander Island (in the maritime and continental Antarctic transitional zone). Polar Biol 35:387–399CrossRefGoogle Scholar
  10. Chuvochina MS, Alekhina IA, Normand P, Petit J-R, Bulat SA (2011) Three Saharan dust event depositions on Mont Blanc glacier associated with different snow-colonizing bacterial phylotype. Microbiology 80:125–131CrossRefGoogle Scholar
  11. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal database project: data and tools for high throughput rRNA analysis Nucl. Acids Res 42(database issue):D633–D642CrossRefGoogle Scholar
  12. Daly MJ (2012) Death by protein damage in irradiated cells. DNA Repair 11:12–21CrossRefPubMedGoogle Scholar
  13. Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Venkateswaran A, Hess M, Omelchenko MV, Kostandarithes HM, Makarova KS, Wackett LP, Fredrickson JK, Ghosal D (2004) Accumulation of Mn(II) in Deinococcus radiodurans facilitates γ-radiation resistance. Science 306:1025–1028CrossRefPubMedGoogle Scholar
  14. Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, Lai B, Ravel B, Li SM, Kemner KM, Fredrickson JK (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 5:e92CrossRefPubMedPubMedCentralGoogle Scholar
  15. Domain F, Houot L, Chauvat F, Cassier-Chauvat C (2004) Function and regulation of the cyanobacterial genes lexA, recA and ruvB: LexA is critical to the survival of cells facing inorganic carbon starvation. Mol Microbiol 53:65–80CrossRefPubMedGoogle Scholar
  16. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fredrickson JK, Li SMW, Gaidamakova EK, Matrosova VY, Zhai M, Sulloway HM, Scholten JC, Brown MG, Balkwill DL, Daly MJ (2008) Protein oxidation: key to bacterial desiccation resistance? ISME J 2:393–403CrossRefPubMedGoogle Scholar
  18. Friedmann EI (1980) Endolithic microbial life in hot and cold deserts. Orig Life 10:223–235CrossRefPubMedGoogle Scholar
  19. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  20. Larsson J, Nylander JA, Bergman B (2011) Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits. BMC Evol Biol 11:187CrossRefPubMedPubMedCentralGoogle Scholar
  21. Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178(3):633–637CrossRefPubMedPubMedCentralGoogle Scholar
  22. Michaud AB, Šabacká M, Priscu JC (2012) Cyanobacterial diversity across landscape units in a polar desert: Taylor Valley, Antarctica. FEMS Microbiol Ecol 82:268–278CrossRefPubMedGoogle Scholar
  23. Munteanu A, Uivarosi V, Andries A (2015) Recent progress in understanding the molecular mechanisms of radioresistance in Deinococcus bacteria. Extremophiles 19:707–719CrossRefPubMedGoogle Scholar
  24. Murik O, Oren N, Shotland Y, Raanan H, Treves H, Kedem I, Keren N, Hagemann M, Pade N, Kaplan A (2017) What distinguishes cyanobacteria able to revive after desiccation from those that cannot: the genome aspect. Environ Microbiol 19:535–550CrossRefPubMedGoogle Scholar
  25. Paulino-Lima IG, Fujishima K, Navarrete JU, Galante D, Rodrigues F, Azua-Bustos A, Rothschild LJ (2017) Extremely high UV-C radiation resistant microorganisms from desert environments with different manganese concentrations. J Photochem Photobiol B 163:327–336CrossRefGoogle Scholar
  26. Pointing SB, Warren-Rhodes KA, Lacap DC, Rhodes KL, McKay CP (2007) Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China’s hot and cold hyperarid deserts. Environ Microbiol 9:414–424CrossRefPubMedGoogle Scholar
  27. Raanan H, Oren N, Treves H, Keren N, Ohad I, Berkowicz SM, Hagemann M, Koch M, Shotland Y, Kaplan A (2016) Towards clarifying what distinguishes cyanobacteria able to resurrect after desiccation from those that cannot: the photosynthetic aspect. Biochim Biophys Acta 1857:715–722CrossRefPubMedGoogle Scholar
  28. Rudi K, Skulberg OM, Larsen F, Jakobsen KS (1997) Strain characterization and classification of oxyphotobacteria in clone cultures on the basis of 16S rRNA sequences from the variable regions V6, V7, and V8. Appl Environ Microbiol 63:2593–2599PubMedPubMedCentralGoogle Scholar
  29. Sattin SR, Cleveland CC, Hood E, Reed SC, King AJ, Schmidt SK, Robeson MS, Ascarrunz N, Nemergut DR (2009) Functional shifts in unvegetated, perhumid, recently-deglaciated soils do not correlate with shifts in soil bacterial community composition. J Microbiol 47:673–681CrossRefPubMedGoogle Scholar
  30. Shirkey B, McMaster NJ, Smith SC, Wright DJ, Rodriguez H, Jaruga P, Birincioglu M, Helm RF, Potts M (2003) Genomic DNA of Nostoc commune (Cyanobacteria) becomes covalently modified during long-term (decades) desiccation but is protected from oxidative damage and degradation. Nucleic Acids Res 31:2995–3005CrossRefPubMedPubMedCentralGoogle Scholar
  31. Slade D, Radman M (2011) Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 75:133–191CrossRefPubMedPubMedCentralGoogle Scholar
  32. Smith HD, Baqué M, Duncan A, McKay CP, Billi D (2011) Comparative analysis of cyanobacteria inhabiting rocks with different light transmittance in the Mojave Desert: a Mars terrestrial analogue. Int J Astrobiol 13:271–277CrossRefGoogle Scholar
  33. Sun H, Xu G, Zhan H, Chen H, Sun Z, Tian B, Hua Y (2010) Identification and evaluation of the role of the manganese efflux protein in Deinococcus radiodurans. BMC Microbiol 10:319CrossRefPubMedPubMedCentralGoogle Scholar
  34. Van de Peer Y, De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Bioinformatics 10:569–570CrossRefGoogle Scholar
  35. Verseux C, Baqué M, Cifariello R, Fagliarone C, Raguse M, Moeller R, Billi D (2017) Evaluation of the resistance of Chroococcidiopsis spp. to sparsely and densely ionizing irradiation. Astrobiology 17:118–125CrossRefPubMedGoogle Scholar
  36. Warren-Rhodes KA, Rhodes KL, Pointing SB, Ewing SA, Lacap DC, Gómez-Silva B, Amundson R, Friedmann EI, McKay CP (2006) Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb Ecol 52:389–398CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • Claudia Fagliarone
    • 1
  • Claudia Mosca
    • 1
  • Ilaria Ubaldi
    • 1
  • Cyprien Verseux
    • 1
  • Mickael Baqué
    • 2
  • Annick Wilmotte
    • 3
  • Daniela Billi
    • 1
  1. 1.Department of BiologyUniversity of Rome Tor VergataRomeItaly
  2. 2.Astrobiological Laboratories, Institute of Planetary Research, Management and InfrastructureGerman Aerospace CenterBerlinGermany
  3. 3.InBioS-Centre for Protein EngineeringUniversity of LiègeLiègeBelgium

Personalised recommendations