, Volume 21, Issue 6, pp 947–961 | Cite as

Prokaryotic assemblages in the maritime Antarctic Lake Limnopolar (Byers Peninsula, South Shetland Islands)

  • M. Papale
  • C. Rizzo
  • J. A. Villescusa
  • C. Rochera
  • A. Camacho
  • L. Michaud
  • A. Lo Giudice
Original Paper


The potentially metabolically active components within the prokaryotic assemblages inhabiting the Antarctic Lake Limnopolar (Byers Peninsula, Maritime Antarctica) were investigated by a polyphasic approach which included culture-dependent and culture-independent methods (based on RNA molecules). Results support previous observations on the Proteobacteria and Bacteroidetes dominance, followed by Actinobacteria, in Antarctic lakes. In particular, Alpha-, Betaproteobacteria and Bacteroidetes were mainly detected by CARD-FISH and cDNA cloning, whereas Gammaproteobacteria and Actinobacteria dominated within the cultivable fraction. Overall, this study demonstrates the survival potential and physiological heterogeneity of the prokaryotic community in the Lake Limnopolar. The microbial community composition in the lake is affected by external influences (such as marine environment by sea spray and seabird dropping, and microbial mats and mosses of the catchment). However, most external bacteria would be inactive, whereas typical polar taxa dominate the potentially active fraction and are subsidized by external nutrient sources, thus assuming the main biogeochemical roles within the lake.


CARD-FISH Bacterial isolation cDNA clone library Antarctica Limnopolar 



The authors wish to thank all the members of the LIMNOPOLAR Team for their support, as well as to the crew of the ship Las Palmas (Spanish Navy) and the Marine Technology Unit (UTM-CSIC) for logistic support. L. Michaud is particularly indebted to Mr. Hilo Moreno for his professional and enthusiastic help and support, which made sampling possible. The authors thank the reviewers for their valuable comments and suggestions on the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


This work was supported by Grants from PNRA (Programma Nazionale di Ricerche in Antartide), Italian Ministry of Education and Research (PEA 2004, Research Project PNRA 2004/1.6); MNA (Museo Nazionale dell’Antartide); Spanish Ministry of Education and Science, with one of them co-financed by the European FEDER funds (POL2006-06635 and CGL2005-06549-C02-02/ANT).

Supplementary material

792_2017_955_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 kb)


  1. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925PubMedPubMedCentralGoogle Scholar
  2. Barberán A, Casamayor EO (2010) Global phylogenetic community structure and betadiversity patterns of surface bacterioplankton metacommunities. Aquat Microb Ecol 59:1–10CrossRefGoogle Scholar
  3. Blazewicz SJ, Barnard RL, Daly RA, Firestone MK (2013) Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J 7:2061–2068CrossRefPubMedPubMedCentralGoogle Scholar
  4. Camacho A (2006) Planktonic microbial assemblages and the potential effect of metazooplankton predation on the food web of lakes from the maritime Antarctica and sub-Antarctic islands. Rev Environ Sci Biotechnol 5:176–185CrossRefGoogle Scholar
  5. Daims H, Brühl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444CrossRefPubMedGoogle Scholar
  6. Darcy JL, Lynch RC, King AJ, Robeson MS, Schmidt SK (2011) Global distribution of Polaromonas phylotypes—evidence for a highly successful dispersal capacity. PLoS One 6(8):e23742CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fernández-Valiente E, Camacho A, Rochera C, Rico E, Vincent WF, Quesada A (2007) Community structure and physiological characterization of microbial mats in Byers Peninsula. Livingston Island (South Shetland Islands, Antarctica). FEMS Microbiol Ecol 59:377–385CrossRefPubMedGoogle Scholar
  8. Franzmann PD, Springer N, Ludwig W, Conway De Macario E, Rohde M (1993) A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15:573–581CrossRefGoogle Scholar
  9. Franzmann PD, Liu Y, Balkwill DL, Aldrich HC, Conway de Macario E, Boone DR (1997) Methanogenium frigidum sp. nov., a psychrophilic H2-utilizing methanogen from Ace Lake, Antarctica. Int J Syst Bacteriol 47:1068–1072CrossRefPubMedGoogle Scholar
  10. García-Jurado F, Jiménez-Gómez F, Guerrero F (2011) Effects of a dry period on the limnological characteristics of a Mediterranean high mountain lake. Limnetica 30:5–16Google Scholar
  11. Gentile G, Giuliano L, D’Auria G, Smedile F, Azzaro M, De Domenico M, Yakimov MM (2006) Study of bacterial communities in Antarctic coastal waters by a combination of 16S rRNA and 16S rDNA sequencing. Environ Microbiol 8:2150–2161CrossRefPubMedGoogle Scholar
  12. Gugliandolo C, Michaud L, Lo Giudice A, Lentini V, Rochera C, Camacho A, Maugeri TL (2016) Prokaryotic community in lacustrine sediments of Byers Peninsula (Livingston Island, Maritime Antarctica). Microb Ecol 71:387–400CrossRefPubMedGoogle Scholar
  13. Izaguirre I, Allende L, Marinone MC (2003) Comparative study of the planktonic communities of three lakes of contrasting trophic status at Hope Bay (Antarctic Peninsula). J Plankton Res 25:1079–1097CrossRefGoogle Scholar
  14. Karr EA, Ng JM, Belchik SM, Sattley WM, Madigan MT, Achenbach LA (2006) Biodiversity of methanogenic and other Archaea in the permanently frozen Lake Fryxell, Antarctica. Appl Environ Microbiol 72:1663–1666CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kumar S, Tamura K, Nei M (2003) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 2:150–163Google Scholar
  16. Laferla R, Logiudice A, Maimone G (2004) Morphology and LPS content for the estimation of the bacterial biomass in the Ionian Sea. Sci Mar 68:23–31CrossRefGoogle Scholar
  17. Laybourn-Parry J, Bayliss P, Ellis-Evans JC (1995) The dynamics of heterotrophic nanoflagellates and bacterioplankton in a large ultra-oligotrophic Antarctic lake. J Plankton Res 17:1834–1850CrossRefGoogle Scholar
  18. Lo Giudice A, Caruso C, Mangano S, Bruni V, De Domenico M, Michaud L (2012) Marine bacterioplankton diversity and community composition in an Antarctic coastal environment. Microb Ecol 63:210–223CrossRefPubMedGoogle Scholar
  19. Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer KH, Wagner M (2002) Oligonucleotide microarray for 16S rRNA gene based detection of all recognized lineages of sulfate reducing prokaryotes in the environment. Appl Environ Microbiol 68:5064–5081CrossRefPubMedPubMedCentralGoogle Scholar
  20. Loy A, Maixner F, Wagner M, Horn M (2007) ProbeBase: an online resource for rRNA-targeted oligonucleotide probes. Nucleic Acids Res 35:800–804CrossRefGoogle Scholar
  21. Lyons WB, Quesada A, Camacho A (2013) Long-term studies: lessons from Byers Peninsula. Antarct Sci 25:121CrossRefGoogle Scholar
  22. Manz W, Amann R, Ludwig W, Wagner M, Schleifer K-H (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600CrossRefGoogle Scholar
  23. Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer KH (1996) Application of a suite of 16S rRNA specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga–Flavobacter–Bacteroides in the natural environment. Microbiology 142:1097–1106CrossRefPubMedGoogle Scholar
  24. Massana R, Murray AE, Preston CM, DeLong EF (1997) Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara channel. Appl Environ Microbiol 3:50–56Google Scholar
  25. McDonald JE, de Menezes AB, Allison HE, McCarthy AJ (2009) Molecular biological detection and quantification of novel Fibrobacter populations in freshwater lakes. Appl Environ Microbiol 75:5148–5152CrossRefPubMedPubMedCentralGoogle Scholar
  26. Meier H, Amann R, Ludwig W, Schleifer KH (1999) Specific oligonucleotide probes for in situ detection of a major group of Gram-positive bacteria with low DNA G + C content. Syst Appl Microbiol 22:186–196CrossRefPubMedGoogle Scholar
  27. Michaud L, Caruso C, Mangano S, Interdonato F, Bruni V, Lo Giudice A (2012) Predominance of Flavobacterium, Pseudomonas, and Polaromonas within the prokaryotic community of freshwater shallow lakes in the northern Victoria Land, East Antarctica. FEMS Microbiol Ecol 82:391–404CrossRefPubMedGoogle Scholar
  28. Neef A (1997) Application of in situ identification of bacteria to population analysis in complex microbial communities. PhD Dissertation, MunichGoogle Scholar
  29. Pearce DA (2003) Bacterioplankton community structure in a maritime Antarctic oligotrophic lake during a period of holomixis, as determined by denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridisation (FISH). Microb Ecol 46:92–105CrossRefPubMedGoogle Scholar
  30. Pearce DA, Van Der Gast CJ, Lawley B, Ellis-Evans JC (2003) Bacterioplankton community diversity in a Maritime Antarctic lake, determined by culture-dependent and culture-independent techniques. FEMS Microbiol Ecol 45:59–70CrossRefPubMedGoogle Scholar
  31. Pearce DA, van der Gast CJ, Woodward K, Newsham KK (2005) Significant changes in the bacterioplankton community structure of a maritime Antarctic freshwater lake following nutrient enrichment. Microbiology 151:3237–3248CrossRefPubMedGoogle Scholar
  32. Peeters K, Hodgson DA, Convey P, Willems A (2011) Culturable diversity of heterotrophic bacteria in Forlidas Pond (Pensacola Mountains) and Lundström Lake (Shackleton Range), Antarctica. Microb Ecol 62:399–413CrossRefPubMedGoogle Scholar
  33. Pernthaler A, Pernthaler J, Amann R (2004) Sensitive multi-color fluorescence in situ hybridization for the identification of environmental microorganisms. In: Kowalchuk G et al (eds) Molecular microbial ecology manual, 2nd edn. vol 11. Kluwer Academic Press, Dordrecht, The Netherlands, pp 711–726Google Scholar
  34. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  35. Purdy KJ, Nedwell DB, Embley TM (2003) Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Appl Environ Microbiol 69:3181–3191CrossRefPubMedPubMedCentralGoogle Scholar
  36. Quayle WC, Peck LS, Peat H, Ellis-Evans JC, Harrigan PR (2002) Extreme responses to climate change in Antarctic lakes. Science 295:645CrossRefPubMedGoogle Scholar
  37. Quesada A, Camacho A, Lyons WB (2013) Multidisciplinary research on Byers Peninsula, Livingston Island: a future benchmark for change in Maritime Antarctica. Antarct Sci 25:123–127CrossRefGoogle Scholar
  38. Rochera C, Justel A, Fernández-Valiente E, Bañón M, Rico E, Toro M, Camacho A, Quesada A (2010) Interannual meteorological variability and its effects on a lake from maritime Antarctica. Polar Biol 33:1615–1628CrossRefGoogle Scholar
  39. Rochera C, Toro M, Rico E, Fernández-Valiente E, Villaescusa JA, Picazo A, Quesada A, Camacho A (2013) Structure of planktonic microbial communities along a trophic gradient in lakes of Byers Peninsula, South Shetland Islands. Antarct Sci 25:277–287CrossRefGoogle Scholar
  40. Roller C, Wagner M, Amann R, Ludwig W, Schleifer KH (1994) In situ probing of Gram-positive bacteria with high DNA G + C content using 23S rRNA-targeted oligonucleotides. Microbiology 140:2849–2858CrossRefPubMedGoogle Scholar
  41. Saitou M, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  42. Saul DJ, Aislabie J-M, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141–155CrossRefPubMedGoogle Scholar
  43. Stahl DA, Amann R (1991) Development and application of nucleic acid probes. In: Stackebrand E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 205–248Google Scholar
  44. Takacs CD, Priscu JC (1998) Bacterioplankton dynamics in the McMurdo Dry Valley lakes, Antarctica: production and biomass loss over four seasons. Microb Ecol 36:239–250CrossRefPubMedGoogle Scholar
  45. Tamames J, Abellan JJ, Pignatelli M, Camacho A, Moya A (2010) Environmental distribution of prokaryotic taxa. BMC Microbiol 10:85CrossRefPubMedPubMedCentralGoogle Scholar
  46. Tang C, Michael TM, Lanoila B (2013) Bacterial and Archaeal diversity in sediments of West Lake Bonney, McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 79:1034–1038CrossRefPubMedPubMedCentralGoogle Scholar
  47. Teira E, Reinthaler T, Pernthaler A (2004) Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and archaea in the deep ocean. Appl Environ Microbiol 70:4411–4414CrossRefPubMedPubMedCentralGoogle Scholar
  48. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  49. Toro M, Camacho A, Rochera C, Rico E, Bañón M, Fernández-Valiente E, Marco E, Justel A, Avendaño MC, Ariosa Y, Vincent WF, Quesada A (2007) Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in maritime Antarctica. Polar Biol 30:635–649CrossRefGoogle Scholar
  50. Tytgat B, Verleyen E, Obbels D, Peeters K, De Wever A, D’hondt S, De Meyer T, Van Criekinge W, Vyverman W, Willems A (2014) Bacterial diversity assessment in Antarctic terrestrial and aquatic microbial mats: a comparison between bidirectional pyrosequencing and cultivation. PLoS One 9(6):e97564CrossRefPubMedPubMedCentralGoogle Scholar
  51. Van Trappen S, Mergaert J, Van Eygen S, Dawyndt P, Cnockaert MC, Swings J (2002) Diversity of 746 heterotrophic bacteria isolated from microbial mats from ten Antarctic lakes. Syst Appl Microbiol 25:603–610CrossRefPubMedGoogle Scholar
  52. Velázquez D, Rochera C, Camacho A, Quesada A (2011) Temperature effects on Antarctic non-marine phototrophic communities. Polar Biol 34:1045–1055CrossRefGoogle Scholar
  53. Velázquez D, López-Bueno A, de Cárcer DA, de los Ríos A, Alcamí A, Quesada A (2016) Ecosystem function decays by fungal outbreaks in Antarctic microbial mats. Sci Rep 6:22954CrossRefPubMedPubMedCentralGoogle Scholar
  54. Villaescusa JA, Casamayor EO, Rochera C, Velázquez D, Chicote A, Quesada A, Camacho A (2010) A close link between bacterial community composition and environmental heterogeneity in maritime Antarctic lakes. Int Microbiol 13:67–77PubMedGoogle Scholar
  55. Villaescusa JA, Rochera C, Velázquez D, Rico E, Quesada A, Camacho A (2013a) Bacterioplankton summer dynamics in a maritime Antarctic Lake. Limnetica 32:253–268Google Scholar
  56. Villaescusa JA, Casamayor EO, Rochera C, Quesada A, Michaud L, Camacho A (2013b) Heterogeneous vertical structure of the bacterioplankton community in a non-stratified Antarctic lake. Antarct Sci 25:229–238CrossRefGoogle Scholar
  57. Villaescusa JA, Jørgensen SE, Rochera C, Velázquez D, Quesada A, Camacho A (2016) Carbon dynamics modelization and biological community sensitivity to temperature in an oligotrophic freshwater Antarctic lake. Ecol Model 219:21–30CrossRefGoogle Scholar
  58. Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent in situ hybridization of suspended cells with rRNA-targeted oligonucleotide probes for the flow cytometric identification of microorganisms. Cytometry 14:136–143CrossRefPubMedGoogle Scholar
  59. Zeng Y, Zou Y, Grebmeier JM, He J, Zheng T (2012) Culture-independent and -dependent methods to investigate the diversity of planktonic bacteria in the northern Bering Sea. Polar Biol 35:117–129CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • M. Papale
    • 1
  • C. Rizzo
    • 1
  • J. A. Villescusa
    • 2
  • C. Rochera
    • 2
  • A. Camacho
    • 2
  • L. Michaud
    • 1
  • A. Lo Giudice
    • 1
    • 3
  1. 1.Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversità di MessinaMessinaItaly
  2. 2.Cavanilles Institute for Biodiversity and Evolutionary BiologyUniversidad de ValenciaValenciaSpain
  3. 3.Institute for the Coastal Marine EnvironmentNational Research Council (IAMC-CNR)MessinaItaly

Personalised recommendations