Extremophiles

, Volume 21, Issue 4, pp 789–803 | Cite as

Biocontrol activity of a cold-adapted yeast from Tibet against gray mold in cherry tomato and its action mechanism

  • Hao Hu
  • Michael E. Wisniewski
  • Ahmed Abdelfattah
  • Xiaodong Zheng
Original Paper

Abstract

Cold-adapted biocontrol yeast was selected from four yeast isolates from Tibet against gray mold of cherry tomato in cold storage. The strain numbered LB2 showed the best biocontrol activity and identified as Cryptococcus laurentii. Competition for nutrient, space, and induced fruit resistance was also its antagonistic mechanism. Compared with C. laurentii from sea-level place, the reason why LB2 had a better biocontrol activity was studied. More trehalose and proline in cell of LB2 made it exhibit a better cellular activity at low temperature, such as higher population dynamics in the wounds of cherry tomato and more biocontrol-related enzyme secretion, chitinase and β-glucanase. The better oxidative stress tolerance was another characteristic of LB2. Maybe because of the ideal culture condition, there was no obvious difference between these two yeasts in the growth in vitro test at low temperature. Although the same phenomenon existed in the low pH stress test, LB2 still had higher cell concentration under this stress. Comparative transcriptomics method was also applied to analyze the cell activity of LB2 and C. laurentii at different temperatures. The results showed that more active response in the intracellular structure and intracellular metabolic process to cold temperature made LB2 had a better activity. The present study indicated a possibility to select cold-adapted biocontrol yeast from Tibet and also showed its primary action mechanism.

Keywords

Biocontrol Postharvest Cryptococcus laurentii Tibet Cherry tomato 

Supplementary material

792_2017_943_MOESM1_ESM.doc (44 kb)
Supplementary material 1 (DOC 44 kb)

References

  1. Banani H, Spadaro D, Zhang D, Matic S, Garibaldi A, Gullino ML (2015) Postharvest application of a novel chitinase cloned from Metschnikowia fructicola and overexpressed in Pichia pastoris to control brown rot of peaches. Int J Food Microbiol 199:54–61. doi:10.1016/j.ijfoodmicro.2015.01.002 CrossRefPubMedGoogle Scholar
  2. Besil N, Pérez-Parada A, Cesio V, Varela P, Rivas F, Heinzen H (2016) Degradation of imazalil, orthophenylphenol and pyrimethanil in Clementine mandarins under conventional postharvest industrial conditions at 4°C. Food Chem 194:1132–1137. doi:10.1016/j.foodchem.2015.08.111 CrossRefPubMedGoogle Scholar
  3. Broy S, Chen C, Hoffmann T, Brock NL, Nau-Wagner G, Jebbar M, Smits SHJ, Dickschat JS, Bremer E (2015) Abiotic stress protection by ecologically abundant dimethylsulfoniopropionate and its natural and synthetic derivatives: insights from Bacillus subtilis. Environ Microbiol 17:2362–2378. doi:10.1111/1462-2920.12698 CrossRefPubMedGoogle Scholar
  4. Chen J, Li B, Qin G, Tian S (2015) Mechanism of H2O2-induced oxidative stress regulating viability and biocontrol ability of Rhodotorula glutinis. Int J Food Microbiol 193:152–158. doi:10.1016/j.ijfoodmicro.2014.10.025 CrossRefPubMedGoogle Scholar
  5. Ding Y, Sheng J, Li S, Nie Y, Zhao J, Zhu Z, Wang Z, Tang X (2015) The role of gibberellins in the mitigation of chilling injury in cherry tomato (Solanum lycopersicum L.) fruit. Postharvest Biol Technol 101:88–95. doi:10.1016/j.postharvbio.2014.12.001 CrossRefGoogle Scholar
  6. Droby S, Wisniewski M, Macarisin D, Wilson C (2009) Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol Technol 52:137–145. doi:10.1016/j.postharvbio.2008.11.009 CrossRefGoogle Scholar
  7. Dunlap CA, Evans KO, Theelen B, Boekhout T, Schisler DA (2007) Osmotic shock tolerance and membrane fluidity of cold-adapted Cryptococcus flavescens OH 182.9, previously reported as C. nodaensis, a biocontrol agent of Fusarium head blight. FEMS Yeast Res 7:449–458. doi:10.1111/j.1567-1364.2006.00193.x CrossRefPubMedGoogle Scholar
  8. El Ghaouth A, Wilson CL, Wisniewski M (2003) Control of postharvest decay of apple fruit with Candida saitoana and induction of defense responses. Phytopathology 93:344–348. doi:10.1094/PHYTO.2003.93.3.344 CrossRefPubMedGoogle Scholar
  9. Fagundes C, Pérez-Gago MB, Monteiro AR, Palou L (2013) Antifungal activity of food additives in vitro and as ingredients of hydroxypropyl methylcellulose-lipid edible coatings against Botrytis cinerea and Alternaria alternata on cherry tomato fruit. Int J Food Microbiol 166:391–398. doi:10.1016/j.ijfoodmicro.2013.08.001 CrossRefPubMedGoogle Scholar
  10. Fagundes C, Palou L, Monteiro AR, Pérez-Gago MB (2014) Effect of antifungal hydroxypropyl methylcellulose-beeswax edible coatings on gray mold development and quality attributes of cold-stored cherry tomato fruit. Postharvest Biol Technol 92:1–8. doi:10.1016/j.postharvbio.2014.01.006 CrossRefGoogle Scholar
  11. Fagundes C, Moraes K, Pérez-Gago MB, Palou L, Maraschin M, Monteiro AR (2015) Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes. Postharvest Biol Technol 109:73–81. doi:10.1016/j.postharvbio.2015.05.017 CrossRefGoogle Scholar
  12. Fu D, Zeng L, Zheng X, Yu T (2015) Effect of β-glucan on stress tolerances and biocontrol efficacy of Cryptococcus laurentii against Penicillium expansum in pear fruit. Biocontrol 60:669–679. doi:10.1007/s10526-015-9670-7 CrossRefGoogle Scholar
  13. Guo J, Fang W, Lu H, Zhu R, Lu L, Zheng X, Yu T (2014) Inhibition of green mold disease in mandarins by preventive applications of methyl jasmonate and antagonistic yeast Cryptococcus laurentii. Postharvest Biol Technol 88:72–78. doi:10.1016/j.postharvbio.2013.09.008 CrossRefGoogle Scholar
  14. Hernández-Montiel LG, Ochoa JL, Troyo-Diéguez E, Larralde-Corona CP (2010) Biocontrol of postharvest blue mold (Penicillium italicum Wehmer) on Mexican lime by marine and citrus Debaryomyces hansenii isolates. Postharvest Biol Technol 56:181–187. doi:10.1016/j.postharvbio.2009.12.010 CrossRefGoogle Scholar
  15. Hoff KJ (2009) The effect of sequencing errors on metagenomic gene prediction. BMC Genomics. doi:10.1186/1471-2164-10-520 PubMedPubMedCentralGoogle Scholar
  16. Kaoud HA (2014) Alternative methods for the control of Tuta absoluta. GJMAS J 2:41–46. doi:10.1111/jam.12495 Google Scholar
  17. Khunnamwong P, Limtong S (2016) Yamadazyma endophytica f.a. sp nov., an ascomycetous yeast species isolated from leaf tissue. Int J Syst Evol Microbiol 66:2717–2723. doi:10.1099/ijsem.0.001113 CrossRefGoogle Scholar
  18. Li C, Zhang H, Yang Q, Komla MG, Zhang X, Zhu S (2014) Ascorbic acid enhances oxidative stress tolerance and biological control efficacy of Pichia caribbica against postharvest blue mold decay of apples. J Agric Food Chem 62:7612–7621. doi:10.1021/jf501984n CrossRefPubMedGoogle Scholar
  19. Liu J, Wisniewski M, Droby S, Tian S, Hershkovitz V, Tworkoski T (2011) Effect of heat shock treatment on stress tolerance and biocontrol efficacy of Metschnikowia fructicola. FEMS Microbiol Ecol 76:145–155. doi:10.1111/j.1574-6941.2010.01037.x CrossRefPubMedGoogle Scholar
  20. Liu J, Wisniewski M, Droby S, Norelli J, Hershkovitz V, Tian S, Farrell R (2012) Increase in antioxidant gene transcripts, stress tolerance and biocontrol efficacy of Candida oleophila following sublethal oxidative stress exposure. FEMS Microbiol Ecol 80:578–590. doi:10.1111/j.1574-6941.2012.01324.x CrossRefPubMedGoogle Scholar
  21. Liu J, Sui Y, Wisniewski M, Droby S, Liu Y (2013) Review: utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int J Food Microbiol 167:153–160. doi:10.1016/j.ijfoodmicro.2013.09.004 CrossRefPubMedGoogle Scholar
  22. Lu H, Lu L, Zeng L, Fu D, Xiang H, Yu T, Zheng X (2014a) Effect of chitin on the antagonistic activity of Rhodosporidium paludigenum against Penicillium expansum in apple fruit. Postharvest Biol Technol 92:9–15. doi:10.1016/j.postharvbio.2014.01.009 CrossRefGoogle Scholar
  23. Lu L, Liu Y, Yang J, Azat R, Yu T, Zheng X (2014b) Quaternary chitosan oligomers enhance resistance and biocontrol efficacy of Rhodosporidium paludigenum to green mold in satsuma orange. Carbohydr Polym 113:174–181. doi:10.1016/j.carbpol.2014.06.077 CrossRefPubMedGoogle Scholar
  24. Luo S, Wan B, Feng S, Shao Y (2013) Biocontrol of postharvest anthracnose of mango fruit with Debaryomyces nepalensis and effects on storage quality and postharvest physiology. J Food Sci. doi:10.1111/1750-3841.13087 Google Scholar
  25. Lutz MC, Lopes CA, Sosa MC, Sangorrín MP (2012) A new improved strategy for the selection of cold-adapted antagonist yeasts to control postharvest pear diseases. Biocontrol Sci Technol 22:1465–1483. doi:10.1080/09583157.2012.735223 CrossRefGoogle Scholar
  26. Manso T, Nunes C (2011) Metschnikowia andauensis as a new biocontrol agent of fruit postharvest diseases. Postharvest Biol Technol 61:64–71. doi:10.1016/j.postharvbio.2011.02.004 CrossRefGoogle Scholar
  27. Momose Y, Hirayama K, Itoh K (2008) Competition for proline between indigenous Escherichia coli and E. coli O157:H7 in gnotobiotic mice associated with infant intestinal microbiota and its contribution to the colonization resistance against E. coli O157:H7. Antonie van Leeuwenhoek. Int J Gen Mol Microbiol 94:165–171. doi:10.1007/s10482-008-9222-6 Google Scholar
  28. Nally MC, Pesce VM, Maturano YP, Rodriguez Assaf LA, Toro ME, Castellanos de Figueroa LI, Vazquez F (2015) Antifungal modes of action of Saccharomyces and other biocontrol yeasts against fungi isolated from sour and grey rots. Int J Food Microbiol 204:91–100. doi:10.1016/j.ijfoodmicro.2015.03.024 CrossRefPubMedGoogle Scholar
  29. Nunes CA (2011) Biological control of postharvest diseases of fruit. Eur J Plant Pathol 133:181–196. doi:10.1007/s10658-011-9919-7 CrossRefGoogle Scholar
  30. Parafati L, Vitale A, Restuccia C, Cirvilleri G (2015) Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiol 47:85–92. doi:10.1016/j.fm.2014.11.013 CrossRefPubMedGoogle Scholar
  31. Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652. doi:10.1093/bioinformatics/btg034 CrossRefPubMedGoogle Scholar
  32. Qin X, Xiao H, Xue C, Yu Z, Yang R, Cai Z, Si L (2015) Biocontrol of gray mold in grapes with the yeast Hanseniaspora uvarum alone and in combination with salicylic acid or sodium bicarbonate. Postharvest Biol Technol 100:160–167. doi:10.1016/j.postharvbio.2014.09.010 CrossRefGoogle Scholar
  33. Robiglio A, Sosa MC, Lutz MC, Lopes CA, Sangorrín MP (2011) Yeast biocontrol of fungal spoilage of pears stored at low temperature. Int J Food Microbiol 147:211–216. doi:10.1016/j.ijfoodmicro.2011.04.007 CrossRefPubMedGoogle Scholar
  34. Romanazzi G, Lichter A, Gabler FM, Smilanick JL (2012) Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biol Technol 63:141–147. doi:10.1016/j.postharvbio.2011.06.013 CrossRefGoogle Scholar
  35. Sharma RR, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221. doi:10.1016/j.biocontrol.2009.05.001 CrossRefGoogle Scholar
  36. Spadaro D, Droby S (2016) Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci Technol 47:39–49. doi:10.1016/j.tifs.2015.11.003 CrossRefGoogle Scholar
  37. Spadaro D, Lorè A, Garibaldi A, Gullino ML (2013) A new strain of Metschnikowia fructicola for postharvest control of Penicillium expansum and patulin accumulation on four cultivars of apple. Postharvest Biol Technol 75:1–8CrossRefGoogle Scholar
  38. Sugar D, Basile SR (2011) Orchard calcium and fungicide treatments mitigate effects of delayed postharvest fungicide applications for control of postharvest decay of pear fruit. Postharvest Biol Technol 60:52–56. doi:10.1016/j.postharvbio.2010.11.007 CrossRefGoogle Scholar
  39. Sui Y, Liu J, Wisniewski M, Droby S, Norelli J, Hershkovitz V (2012) Pretreatment of the yeast antagonist, Candida oleophila, with glycine betaine increases oxidative stress tolerance in the microenvironment of apple wounds. Int J Food Microbiol 157:45–51. doi:10.1016/j.ijfoodmicro.2012.04.01010.1111/j.1574-6941.2012.01324.x CrossRefPubMedGoogle Scholar
  40. Sui Y, Wisniewski M, Droby S, Liu J (2015) Responses of yeast biocontrol agents to environmental stress. Appl Environ Microbiol 81:2968–2975. doi:10.1128/AEM.04203-14 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tolaini V, Zjalic S, Reverberi M, Fanelli C, Fabbri AA, Del Fiore A, De Rossi P, Ricelli A (2010) Lentinula edodes enhances the biocontrol activity of Cryptococcus laurentii against Penicillium expansum contamination and patulin production in apple fruits. Int J Food Microbiol 138:243–249. doi:10.1016/j.ijfoodmicro.2010.01.044 CrossRefPubMedGoogle Scholar
  42. Trevisol ETV, Panek AD, De Mesquita JF, Eleutherio ECA (2014) Regulation of the yeast trehalose-synthase complex by cyclic AMP-dependent phosphorylation. Biochim Biophys Acta Gen Subj 1840:1646–1650. doi:10.1016/j.bbagen.2013.12.010 CrossRefGoogle Scholar
  43. Vero S, Garmendia G, Gonzalez MB, Bentancur O, Wisniewski M (2013) Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus × domestica). FEMS Yeast Res 13:189–199. doi:10.1111/1567-1364.12021 CrossRefPubMedGoogle Scholar
  44. Vilanova L, Wisniewski M, Norelli J, Viñas I, Torres R, Usall J, Phillips J, Droby S, Teixidó N (2014) Transcriptomic profiling of apple in response to inoculation with a pathogen (Penicillium expansum) and a non-pathogen (Penicillium digitatum). Plant Mol Biol Rep 32:566–583. doi:10.1007/s11105-013-0676-y CrossRefGoogle Scholar
  45. Wang YS, Wang ZY (2012) Sodium citrate induces apoptosis in biocontrol yeast Cryptococcus laurentii. J Appl Microbiol 113:135–142. doi:10.1111/j.1365-2672.2012.05312.x CrossRefPubMedGoogle Scholar
  46. Wang YF, Wang P, Xia JD, Yu T, Lou BG, Wang J, Zheng XD (2010a) Effect of water activity on stress tolerance and biocontrol activity in antagonistic yeast Rhodosporidium paludigenum. Int J Food Microbiol 143:103–108. doi:10.1016/j.ijfoodmicro.2010.07.035 CrossRefPubMedGoogle Scholar
  47. Wang YF, Yu T, Xia JD, Yu DS, Wang J, Zheng XD (2010b) Biocontrol of postharvest gray mold of cherry tomatoes with the marine yeast Rhodosporidium paludigenum. Biol Control 53:178–182. doi:10.1016/j.biocontrol.2010.01.002 CrossRefGoogle Scholar
  48. Wang X, Wang L, Wang J, Jin P, Liu H, Zheng Y (2014) Bacillus cereus AR156-induced resistance to Colletotrichum acutatum is associated with priming of defense responses in loquat fruit. PLoS One 9:3–10. doi:10.1371/journal.pone.0112494 Google Scholar
  49. Wisniewski M, Bassett C, Norelli J, Macarisin D, Artlip T, Gasic K, Korban S (2008) Expressed sequence tag analysis of the response of apple (Malus × domestica “Royal Gala”) to low temperature and water deficit. Physiol Plant 133:298–317. doi:10.1111/j.1399-3054.2008.01063.x CrossRefPubMedGoogle Scholar
  50. Yang Q, Wang H, Zhang H, Zhang X, Apaliya MT, Zheng X, Mahunu GK (2017) Effect of Yarrowia lipolytica on postharvest decay of grapes caused by Talaromyces rugulosus and the protein expression profile of T. rugulosus. Postharvest Biol Technol 126:15–22. doi:10.1016/j.postharvbio.2016.11.015 CrossRefGoogle Scholar
  51. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297. doi:10.1093/nar/gkl031 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yu S-M, Lee YH (2015) Genes involved in nutrient competition by Pseudomonas putida JBC17 to suppress green mold in postharvest satsuma mandarin. J Basic Microbiol 55:898–906. doi:10.1002/jobm.201400792 CrossRefPubMedGoogle Scholar
  53. Yu T, Wu PG, Qi JJ, Zheng XD, Jiang F, Zhan X (2006) Improved control of postharvest blue mold rot in pear fruit by a combination of Cryptococcus laurentii and gibberellic acid. Biol Control 39:128–134. doi:10.1016/j.biocontrol.2006.05.008 CrossRefGoogle Scholar
  54. Yu T, Yu C, Lu HP, Zunun M, Chen FX, Zhou T, Sheng K, Zheng XD (2012) Effect of Cryptococcus laurentii and calcium chloride on control of Penicillium expansum and Botrytis cinerea infections in pear fruit. Biol Control 61:169–175. doi:10.1016/j.biocontrol.2012.01.012 CrossRefGoogle Scholar
  55. Zeng L, Yu C, Fu D, Lu H, Zhu R, Lu L, Zheng X, Yu T (2015) Improvement in the effectiveness of Cryptococcus laurentii to control postharvest blue mold of pear by its culture in β-glucan amended nutrient broth. Postharvest Biol Technol 104:26–32. doi:10.1016/j.postharvbio.2015.03.005 CrossRefGoogle Scholar
  56. Zhang HY, Zheng XD, Xi YF (2005) Biological control of postharvest blue mold of oranges by Cryptococcus laurentii (Kufferath) Skinner. Biocontrol 50:331–342. doi:10.1007/s10526-004-0452-x CrossRefGoogle Scholar
  57. Zhang HY, Zheng XD, Yu T (2007) Biological control of postharvest diseases of peach with Cryptococcus laurentii. Food Control 18:287–291. doi:10.1016/j.foodcont.2005.10.007 CrossRefGoogle Scholar
  58. Zhang C, Chen K, Wang G (2013a) Combination of the biocontrol yeast Cryptococcus laurentii with UV-C treatment for control of postharvest diseases of tomato fruit. Biocontrol 58:269–281. doi:10.1007/s10526-012-9477-8 CrossRefGoogle Scholar
  59. Zhang H, Liu Z, Xu B, Chen K, Yang Q, Zhang Q (2013b) Burdock fructooligosaccharide enhances biocontrol of Rhodotorula mucilaginosa to postharvest decay of peaches. Carbohydr Polym 98:366–371. doi:10.1016/j.carbpol.2013.06.008 CrossRefPubMedGoogle Scholar
  60. Zhang X, Sun Y, Yang Q, Chen L, Li W, Zhang H (2015) Control of postharvest black rot caused by Alternaria alternata in strawberries by the combination of Cryptococcus laurentii and Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester. Biol Control 90:96–101. doi:10.1016/j.biocontrol.2015.05.018 CrossRefGoogle Scholar
  61. Zhang Q, Yong D, Zhang Y, Shi X, Li B, Li G, Liang W, Wang C (2016) Streptomyces rochei A-1 induces resistance and defense-related responses against Botryosphaeria dothidea in apple fruit during storage. Postharvest Biol Technol 115:30–37. doi:10.1016/j.postharvbio.2015.12.013 CrossRefGoogle Scholar
  62. Zhu Z, Tian S (2012) Resistant responses of tomato fruit treated with exogenous methyl jasmonate to Botrytis cinerea infection. Sci Hortic (Amsterdam) 142:38–43. doi:10.1016/j.scienta.2012.05.002 CrossRefGoogle Scholar

Copyright information

© Springer Japan 2017

Authors and Affiliations

  1. 1.College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
  2. 2.U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS)KearneysvilleUSA
  3. 3.University of PalermoPalermoItaly
  4. 4.Dipartimento di AgrariaUniversità Mediterranea di Reggio CalabriaReggio CalabriaItaly

Personalised recommendations