Thermal adaptation strategies of the extremophile bacterium Thermus filiformis based on multi-omics analysis

Abstract

Thermus filiformis is an aerobic thermophilic bacterium isolated from a hot spring in New Zealand. The experimental study of the mechanisms of thermal adaptation is important to unveil response strategies of the microorganism to stress. In this study, the main pathways involved on T. filiformis thermoadaptation, as well as, thermozymes with potential biotechnological applications were revealed based on omics approaches. The strategy adopted in this study disclosed that pathways related to the carbohydrate metabolism were affected in response to thermoadaptation. High temperatures triggered oxidative stress, leading to repression of genes involved in glycolysis and the tricarboxylic acid cycle. During heat stress, the glucose metabolism occurred predominantly via the pentose phosphate pathway instead of the glycolysis pathway. Other processes, such as protein degradation, stringent response, and duplication of aminoacyl-tRNA synthetases, were also related to T. filiformis thermoadaptation. The heat-shock response influenced the carotenoid profile of T. filiformis, favoring the synthesis of thermozeaxanthins and thermobiszeaxanthins, which are related to membrane stabilization at high temperatures. Furthermore, antioxidant enzymes correlated with free radical scavenging, including superoxide dismutase, catalase and peroxidase, and metabolites, such as oxaloacetate and α-ketoglutarate, were accumulated at 77 °C.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adamberg K, Kask S, Laht T, Paalme T (2003) The effect of temperature and pH on the growth of lactic acid bacteria: a pH-auxostat study. Int J Food Microbiol 85:171–183. doi:10.1016/S0168-1605(02)00537-8

    CAS  Article  PubMed  Google Scholar 

  2. Atkinson GC, Tenson T, Hauryliuk V (2011) The RelA/SpoT Homolog (RSH) superfamily: distribution and functional evolution of ppgpp synthetases and hydrolases across the tree of life. PLoS One. doi:10.1371/journal.pone.0023479

    Google Scholar 

  3. Becker HD, Kern D (1998) Thermus thermophilus: a link in evolution of the tRNA-dependent amino acid amidation pathways. Proc Natl Acad Sci USA 95:12832–12837. doi:10.1073/pnas.95.22.12832

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Becker HD, Roy H, Moulinier L et al (2000) Thermus thermophilus contains an eubacterial and an archaebacterial aspartyl-tRNA synthetase. Biochemistry 39:3216–3230. doi:10.1021/bi992573y

    CAS  Article  PubMed  Google Scholar 

  5. Benitez A, Sánchez O (2009) Evaluation of agro-industrial by-products for α-galactosidase production by aspergillus oryzae in submerged culture. In: 9th international conference on chemical and process engineering, pp 1155–1160

  6. Blasco F, Kauffmann I, Schmid RD (2004) CYP175A1 from Thermus thermophilus HB27, the first beta-carotene hydroxylase of the P450 superfamily. Appl Microbiol Biotechnol 64:671–674. doi:10.1007/s00253-003-1529-7

    CAS  Article  PubMed  Google Scholar 

  7. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Brüggemann H, Chen C (2006) Comparative genomics of Thermus thermophilus: plasticity of the megaplasmid and its contribution to a thermophilic lifestyle. J Biotechnol 124:654–661. doi:10.1016/j.jbiotec.2006.03.043

    Article  PubMed  Google Scholar 

  9. Caldas TD, El Yaagoubi A, Richarme G (1998) Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem 273:11478–11482. doi:10.1074/jbc.273.19.11478

    CAS  Article  PubMed  Google Scholar 

  10. Chen J, Shen J, Solem C, Jensen PR (2013) Oxidative stress at high temperatures in lactococcus lactis due to an insufficient supply of riboflavin. Appl Environ Microbiol 79:6140–6147. doi:10.1128/AEM.01953-13

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Cuadros-Inostroza A, Caldana C, Redestig H et al (2009) TargetSearch—a bioconductor package for the efficient preprocessing of GC–MS metabolite profiling data. BMC Bioinform 10:428. doi:10.1186/1471-2105-10-428

    Article  Google Scholar 

  12. Dalebroux ZD, Swanson MS (2012) ppGpp: magic beyond RNA polymerase. Nat Rev Microbiol 10:203–212. doi:10.1038/nrmicro2720

    CAS  Article  PubMed  Google Scholar 

  13. de Souza TA, Soprano AS, de Lira NPV et al (2012) The TAL effector PthA4 interacts with nuclear factors involved in RNA-dependent processes including a HMG protein that selectively binds poly(U) RNA. PLoS One 7:e32305. doi:10.1371/journal.pone.0032305

    Article  PubMed  PubMed Central  Google Scholar 

  14. Developement Core Team R (2015) R: a language and environment for statistical computing. R Found Stat Comput 1:409. doi:10.1007/978-3-540-74686-7

    Google Scholar 

  15. Egas M, Da Costa M, Cowan D, Pires E (1998) Extracellular α-amylase from Thermus filiformis Ork A2: purification and biochemical characterization. Extremophiles 2:23–32. doi:10.1007/s007920050039

    CAS  Article  PubMed  Google Scholar 

  16. Farr SB, Kogoma T (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55:561–585

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fiorentino A, D’Abrosca B, Pacifico S et al (2006) Spectroscopic identification and antioxidant activity of glucosylated carotenoid metabolites from Cydonia vulgaris fruits. J Agric Food Chem 54:9592–9597. doi:10.1021/jf062125e

    CAS  Article  PubMed  Google Scholar 

  18. Fridovich I (1998) Oxygen toxicity: a radical explanation. J Exp Biol 201:1203–1209

    CAS  PubMed  Google Scholar 

  19. Fu H, Xie B, Fan G et al (2010) Effect of esterification with fatty acid of B-cryptoxanthin on its thermal stability and antioxidant activity by chemiluminescence method. Food Chem 122:602–609. doi:10.1016/j.foodchem.2010.03.019

    CAS  Article  Google Scholar 

  20. Fuciños P, Abadín CM, Sanromán A et al (2005) Identification of extracellular lipases/esterases produced by Thermus thermophilus HB27: partial purification and preliminary biochemical characterisation. J Biotechnol 117:233–241. doi:10.1016/j.jbiotec.2005.01.019

    Article  PubMed  Google Scholar 

  21. Gandhi A, Shah NP (2016) Integrating omics to unravel the stress response mechanisms in probiotic bacteria: approaches, challenges, and prospects. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2015.1136805

    Google Scholar 

  22. Gao H, Wang Y, Liu X et al (2004) Global transcriptome analysis of the heat shock response of Shewanella oneidensis. J Bacteriol 186:7796–7803

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Giavalisco P, Li Y, Matthes A et al (2011) Elemental formula annotation of polar and lipophilic metabolites using (13) C, (15) N and (34) S isotope labelling, in combination with high-resolution mass spectrometry. Plant J 68:364–376. doi:10.1111/j.1365-313X.2011.04682.x

    CAS  Article  PubMed  Google Scholar 

  24. Grüning N-M, Du D, Keller MA et al (2014) Inhibition of triosephosphate isomerase by phosphoenolpyruvate in the feedback-regulation of glycolysis. Open Biol 4:130232. doi:10.1098/rsob.130232

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hamid AA, Aiyelaagbe OO, Usman LA et al (2010) Antioxidants: its medicinal and pharmacological applications. Afr J Pure Appl Chemostry 4:142–151

    CAS  Google Scholar 

  26. Hanna SL, Sherman NE, Kinter MT, Goldberg JB (2000) Comparison of proteins expressed by Pseudomonas aeruginosa strains representing initial and chronic isolates from a cystic fibrosis patient: an analysis by 2-D gel electrophoresis and capillary column liquid chromatography-tandem mass spectrometry. Microbiology 146:2495–2508

    CAS  Article  PubMed  Google Scholar 

  27. Hara M, Yuan H, Yang Q et al (1999) Stabilization of liposomal membranes by thermozeaxanthins: carotenoid-glucoside esters. Biochim Biophys Acta 1461:147–154

    CAS  Article  PubMed  Google Scholar 

  28. Hauryliuk V, Atkinson GC, Murakami KS et al (2015) Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol 13:298–309. doi:10.1038/nrmicro3448

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Hickey DA, Singer GAC (2004) Genomic and proteomic adaptations to growth at high temperature. Genome Biol 5:1–7. doi:10.1186/gb-2004-5-10-117

    Article  Google Scholar 

  30. Hirshfield IN, Bloch PL, Van Bogelen RA, Neidhardt FC (1981) Multiple forms of lysyl-transfer ribonucleic acid synthetase in Escherichia coli. J Bacteriol 146:345–351

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jia B, Liu J, Van Duyet L et al (2015) Proteome profiling of heat, oxidative, and salt stress responses in Thermococcus kodakarensis KOD1. Front Microbiol 6:1–12. doi:10.3389/fmicb.2015.00605

    Google Scholar 

  32. Jozefczuk S, Klie S, Catchpole G et al (2010) Metabolomic and transcriptomic stress response of Escherichia coli. Mol Syst Biol 6:364. doi:10.1038/msb.2010.18

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kanehisa M, Goto S (2000) Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. doi:10.1093/nar/28.1.27

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Kanehisa M, Sato Y, Kawashima M et al (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462. doi:10.1093/nar/gkv1070

    Article  PubMed  Google Scholar 

  35. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392. doi:10.1021/ac025747h

    CAS  Article  PubMed  Google Scholar 

  36. Kopylova E, Noe L, Touzet H (2012) SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28(24):3211–3217

    CAS  Article  PubMed  Google Scholar 

  37. Kriel A, Bittner AN, Kim SH et al (2012) Direct regulation of GTP homeostasis by (p)ppGpp: a critical component of viability and stress resistance. Mol Cell 48:231–241. doi:10.1016/j.molcel.2012.08.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Leveque F, Gazeau M, Fromant M et al (1991) Control of Escherichia coli lysyl-tRNA synthetase expression by anaerobiosis. J Bacteriol 173:7903–7910

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Li K, Jiang T, Yu B et al (2012) Transcription elongation factor GreA has functional chaperone activity. PLoS One 7:e47521. doi:10.1371/journal.pone.0047521

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Liao Y, Smyth GK, Shi W (2013) The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. doi:10.1093/nar/gkt214

    Google Scholar 

  42. Liu C, Niu Y, Zhou X et al (2015) Streptococcus mutans copes with heat stress by multiple transcriptional regulons modulating virulence and energy metabolism. Sci Rep 5:12929. doi:10.1038/srep12929

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Long LH, Halliwell B (2012) The effects of oxaloacetate on hydrogen peroxide generation from ascorbate and epigallocatechin gallate in cell culture media: potential for altering cell metabolism. Biochem Biophys Res Commun 417:446–450. doi:10.1016/j.bbrc.2011.11.136

    CAS  Article  PubMed  Google Scholar 

  44. Mailloux RJ, Bériault R, Lemire J et al (2007) The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS One 2:e690. doi:10.1371/journal.pone.0000690

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mandelli F, Miranda VS, Rodrigues E, Mercadante AZ (2012a) Identification of carotenoids with high antioxidant capacity produced by extremophile microorganisms. World J Microbiol Biotechnol 28:1781–1790. doi:10.1007/s11274-011-0993-y

    CAS  Article  PubMed  Google Scholar 

  46. Mandelli F, Yamashita F, Pereira J, Mercadante A (2012b) Evaluation of biomass production, carotenoid level and antioxidant capacity produced by Thermus filiformis using fractional factorial design. Braz J Microbiol 43:126–134. doi:10.1590/S1517-83822012000100014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Mandelli F, Franco Cairo JPL, Citadini APS et al (2013) The characterization of a thermostable and cambialistic superoxide dismutase from Thermus filiformis. Lett Appl Microbiol 57:40–46. doi:10.1111/lam.12071

    CAS  Article  PubMed  Google Scholar 

  48. Mandelli F, Ramires BO, Couger MB et al (2015) Draft genome sequence of the thermophile Thermus filiformis ATCC 43280, producer of carotenoid—(di) glucoside-branched fatty acid (di) esters and source of hyperthermostable enzymes of biotechnological interest. Genome Announc 3(3):e00475–15. doi:10.1128/genomeA.00475-15

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mandelstam I (1963) Protein turnover and its function in the economy of the cell. Ann N Y Acad Sci 102:621–636

    CAS  Article  Google Scholar 

  50. Marçais G, Kingsford C (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27:764–770. doi:10.1093/bioinformatics/btr011

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mariutti LRB, Rodrigues E, Mercadante AZ (2013) Carotenoids from Byrsonima crassifolia: identification, quantification and in vitro scavenging capacity against peroxyl radicals. J Food Compos Anal 31:155–160. doi:10.1016/j.jfca.2013.05.005

    CAS  Article  Google Scholar 

  52. Martens JH, Barg H, Warren MJ, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58:275–285. doi:10.1007/s00253-001-0902-7

    CAS  Article  PubMed  Google Scholar 

  53. Miyazaki K (2005) A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles 9:415–425. doi:10.1007/s00792-005-0458-z

    CAS  Article  PubMed  Google Scholar 

  54. Miyoshi A, Rochat T, Gratadoux J-J et al (2003) Oxidative stress in Lactococcus lactis. Genet Mol Res 2:348–359

    CAS  PubMed  Google Scholar 

  55. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry abilities that proteins are present in a sample on the basis. Anal Chem 75:4646–4658. doi:10.1021/ac0341261

    CAS  Article  PubMed  Google Scholar 

  56. Panda T, Gowrishankar BS (2005) Production and applications of esterases. Appl Microbiol Biotechnol 67:160–169. doi:10.1007/s00253-004-1840-y

    CAS  Article  PubMed  Google Scholar 

  57. Pintea A, Bunea A, Andrei S (2013) Impact of esterification on the antioxidant capacity of β-cryptoxanthin. Bull USAMV Anim Sci Biotechnol 70:79–85

    CAS  Google Scholar 

  58. Piper PW (1995) The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134:121–127

    CAS  Article  PubMed  Google Scholar 

  59. Pruneau L, Moumène A, Meyer DF et al (2014) Understanding Anaplasmataceae pathogenesis using “Omics” approaches. Front Cell Infect Microbiol 4:86. doi:10.3389/fcimb.2014.00086

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ralser M, Wamelink MM, Kowald A et al (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6:10. doi:10.1186/jbiol61

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ramaley RF, Hixson J (1970) Isolation of a nonpigmented, thermophilic bacterium similar to Thermus aquaticus. J Bacteriol 103:526–528

    Google Scholar 

  62. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. doi:10.1093/bioinformatics/btp616

    CAS  Article  PubMed  Google Scholar 

  63. Rodrigues E, Mariutti LRB, Chisté RC, Mercadante AZ (2012a) Development of a novel micro-assay for evaluation of peroxyl radical scavenger capacity: application to carotenoids and structure–activity relationship. Food Chem 135:2103–2111. doi:10.1016/j.foodchem.2012.06.074

    CAS  Article  PubMed  Google Scholar 

  64. Rodrigues E, Mariutti LRB, Mercadante AZ (2012b) Scavenging capacity of marine carotenoids against reactive oxygen and nitrogen species in a membrane-mimicking system. Mar Drugs 10:1784–1798. doi:10.3390/md10081784

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Roessner U, Luedemann A, Brust D et al (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29. doi:10.1105/tpc.13.1.11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Shimizu K (2013) Regulation systems of bacteria such as Escherichia coli in response to nutrient limitation and environmental stresses. Metabolites 4:1–35. doi:10.3390/metabo4010001

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sinnott ML (1990) Catalytic mechanism of enzymic glycosyl transfer. Chem Rev 90:1171–1202. doi:10.1021/cr00105a006

    CAS  Article  Google Scholar 

  68. Sun J, Zhou J, Wang Z et al (2015) Multi-omics based changes in response to cadmium toxicity in Bacillus licheniformis A. R Soc Chem 5:7330–7339

    CAS  Google Scholar 

  69. Takano H, Kondo M, Usui N et al (2011) Involvement of CarA/LitR and CRP/FNR family transcriptional regulators in light-induced carotenoid production in Thermus thermophilus. J Bacteriol 193:2451–2459. doi:10.1128/JB.01125-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Topanurak S, Sinchaikul S, Phutrakul S et al (2005) Proteomics viewed on stress response of thermophilic bacterium Bacillus stearothermophilus TLS33. Proteomics 5:3722–3730. doi:10.1002/pmic.200401254

    CAS  Article  PubMed  Google Scholar 

  71. Tsouko E, Khan A, White M et al (2014) Regulation of the pentose phosphate pathway by an androgen receptor-mTOR-mediated mechanism and its role in prostate cancer cell growth. Oncogenesis. doi:10.1038/oncsis.2014.18

    PubMed  PubMed Central  Google Scholar 

  72. Weckwerth W, Wenzel K, Fiehn O (2004) Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics 4:78–83. doi:10.1002/pmic.200200500

    CAS  Article  PubMed  Google Scholar 

  73. Wickham H (2009) Elegant graphics for data analysis. Media 35:211. doi:10.1007/978-0-387-98141-3

    Google Scholar 

  74. Willetts NS (1967) Intracellular protein breakdown in non-growing cells of Escherichia coli. Biochem J 103:453–461

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Yokoyama A (1995) Thermozeaxanthins, new carotenoid-glycoside-esters from thermophilic eubacterium Thermus thermophilus. Tetrahedron Lett 36:4901–4904. doi:10.1016/00404-0399(50)0881C-

    CAS  Article  Google Scholar 

  76. Zhou A, Chen YI, Zane GM et al (2012) Functional characterization of Crp/Fnr-type global transcriptional regulators in Desulfovibrio vulgaris hildenborough. Appl Environ Microbiol 78:1168–1177. doi:10.1128/AEM.05666-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the provision of time at the NGS and MAS facilities (CTBE and LNBio, respectively) of the National Center for Research in Energy and Materials. This work was financially supported by grants from CNPq (442333/2014-5 and 310186/2014-5) and FAPESP (10/18198-3). FM received a fellowship from CNPq (142685/2010-0).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fabio Marcio Squina.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by A. Driessen.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mandelli, F., Couger, M.B., Paixão, D.A.A. et al. Thermal adaptation strategies of the extremophile bacterium Thermus filiformis based on multi-omics analysis. Extremophiles 21, 775–788 (2017). https://doi.org/10.1007/s00792-017-0942-2

Download citation

Keywords

  • Transcriptomics
  • Proteomics
  • Metabolomics
  • Thermozeaxanthins
  • Peroxyl radical scavenging activity