Extremophiles

pp 1–14

Thermal adaptation strategies of the extremophile bacterium Thermus filiformis based on multi-omics analysis

  • F. Mandelli
  • M. B. Couger
  • D. A. A. Paixão
  • C. B. Machado
  • C. M. Carnielli
  • J. A. Aricetti
  • I. Polikarpov
  • R. Prade
  • C. Caldana
  • A. F. Paes Leme
  • A. Z. Mercadante
  • D. M. Riaño-Pachón
  • Fabio Marcio Squina
Original Paper

DOI: 10.1007/s00792-017-0942-2

Cite this article as:
Mandelli, F., Couger, M.B., Paixão, D.A.A. et al. Extremophiles (2017). doi:10.1007/s00792-017-0942-2

Abstract

Thermus filiformis is an aerobic thermophilic bacterium isolated from a hot spring in New Zealand. The experimental study of the mechanisms of thermal adaptation is important to unveil response strategies of the microorganism to stress. In this study, the main pathways involved on T. filiformis thermoadaptation, as well as, thermozymes with potential biotechnological applications were revealed based on omics approaches. The strategy adopted in this study disclosed that pathways related to the carbohydrate metabolism were affected in response to thermoadaptation. High temperatures triggered oxidative stress, leading to repression of genes involved in glycolysis and the tricarboxylic acid cycle. During heat stress, the glucose metabolism occurred predominantly via the pentose phosphate pathway instead of the glycolysis pathway. Other processes, such as protein degradation, stringent response, and duplication of aminoacyl-tRNA synthetases, were also related to T. filiformis thermoadaptation. The heat-shock response influenced the carotenoid profile of T. filiformis, favoring the synthesis of thermozeaxanthins and thermobiszeaxanthins, which are related to membrane stabilization at high temperatures. Furthermore, antioxidant enzymes correlated with free radical scavenging, including superoxide dismutase, catalase and peroxidase, and metabolites, such as oxaloacetate and α-ketoglutarate, were accumulated at 77 °C.

Keywords

Transcriptomics Proteomics Metabolomics Thermozeaxanthins Peroxyl radical scavenging activity 

Supplementary material

792_2017_942_MOESM1_ESM.pdf (646 kb)
Supplementary material 1 (PDF 645 kb)
792_2017_942_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 17 kb)
792_2017_942_MOESM3_ESM.xlsx (11 kb)
Supplementary material 3 (XLSX 10 kb)
792_2017_942_MOESM4_ESM.xlsx (355 kb)
Supplementary material 4 (XLSX 354 kb)
792_2017_942_MOESM5_ESM.xlsx (56 kb)
Supplementary material 5 (XLSX 55 kb)
792_2017_942_MOESM6_ESM.xlsx (13 kb)
Supplementary material 6 (XLSX 12 kb)
792_2017_942_MOESM7_ESM.xlsx (17 kb)
Supplementary material 7 (XLSX 17 kb)

Copyright information

© Springer Japan 2017

Authors and Affiliations

  • F. Mandelli
    • 1
    • 2
  • M. B. Couger
    • 3
  • D. A. A. Paixão
    • 1
  • C. B. Machado
    • 1
  • C. M. Carnielli
    • 4
  • J. A. Aricetti
    • 1
  • I. Polikarpov
    • 5
  • R. Prade
    • 3
  • C. Caldana
    • 1
    • 6
  • A. F. Paes Leme
    • 4
  • A. Z. Mercadante
    • 2
  • D. M. Riaño-Pachón
    • 1
    • 7
  • Fabio Marcio Squina
    • 8
  1. 1.Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE)Centro Nacional de Pesquisa em Energia e Materiais (CNPEM)CampinasBrazil
  2. 2.Departamento de Ciência de Alimentos, Faculdade de Engenharia de AlimentosUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
  3. 3.Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterUSA
  4. 4.Laboratório Nacional de Biociências (LNBio)Centro Nacional de Pesquisa em Energia e Materiais (CNPEM)CampinasBrazil
  5. 5.Instituto de Física de São CarlosUniversidade de São Paulo (USP)São CarlosBrazil
  6. 6.Max Planck Partner Group at Brazilian Bioethanol Science and Technology Laboratory/CNPEMCampinasBrazil
  7. 7.Guest Researcher at Laboratório de Biologia de Sistemas Regulatórios, Instituto de QuímicaUniversidade de São Paulo (USP)São PauloBrazil
  8. 8.Programa de Processos Tecnológicos e AmbientaisUniversidade de Sorocaba (UNISO)SorocabaBrazil

Personalised recommendations