Advertisement

Extremophiles

, Volume 21, Issue 4, pp 733–742 | Cite as

Diversity of bacteria and archaea from two shallow marine hydrothermal vents from Vulcano Island

  • Garabed Antranikian
  • Marcel Suleiman
  • Christian Schäfers
  • Michael W. W. Adams
  • Simonetta Bartolucci
  • Jenny M. Blamey
  • Nils-Kåre Birkeland
  • Elizaveta Bonch-Osmolovskaya
  • Milton S. da Costa
  • Don Cowan
  • Michael Danson
  • Patrick Forterre
  • Robert Kelly
  • Yoshizumi Ishino
  • Jennifer Littlechild
  • Marco Moracci
  • Kenneth Noll
  • Tairo Oshima
  • Frank Robb
  • Mosè Rossi
  • Helena Santos
  • Peter Schönheit
  • Reinhard Sterner
  • Rudolf Thauer
  • Michael Thomm
  • Jürgen Wiegel
  • Karl Otto Stetter
Original Paper

Abstract

To obtain new insights into community compositions of hyperthermophilic microorganisms, defined as having optimal growth temperatures of 80 °C and above, sediment and water samples were taken from two shallow marine hydrothermal vents (I and II) with temperatures of 100 °C at Vulcano Island, Italy. A combinatorial approach of denaturant gradient gel electrophoresis (DGGE) and metagenomic sequencing was used for microbial community analyses of the samples. In addition, enrichment cultures, growing anaerobically on selected polysaccharides such as starch and cellulose, were also analyzed by the combinatorial approach. Our results showed a high abundance of hyperthermophilic archaea, especially in sample II, and a comparable diverse archaeal community composition in both samples. In particular, the strains of the hyperthermophilic anaerobic genera Staphylothermus and Thermococcus, and strains of the aerobic hyperthermophilic genus Aeropyrum, were abundant. Regarding the bacterial community, ε-Proteobacteria, especially the genera Sulfurimonas and Sulfurovum, were highly abundant. The microbial diversity of the enrichment cultures changed significantly by showing a high dominance of archaea, particularly the genera Thermococcus and Palaeococcus, depending on the carbon source and the selected temperature.

Keywords

Hyperthermophiles Archaea Diversity Hydrothermal marine shallow vents 

References

  1. Atomi H, Fukui T, Kanai T, Morikawa M, Imanaka T (2004) Description of Thermococcus kodakarensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. Archaea 1:263–267CrossRefPubMedPubMedCentralGoogle Scholar
  2. Blöchl E, Rachel R, Burggraf S et al (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C. Extremophiles 1:14–21. doi: 10.1007/s007920050010 CrossRefPubMedGoogle Scholar
  3. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi: 10.1093/bioinformatics/btu170 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Buchfink B, Xie C, Huson DG (2015) Fast and sensitive protein alignment using Diamond. Nature Methods 12(1):59–60CrossRefPubMedGoogle Scholar
  5. Campbell Barbara J, Engel Summers, Annette Porter, Megan L, Takai K (2006) ε-proteobacteria. Nat Rev Microbiol 4:458–468CrossRefPubMedGoogle Scholar
  6. Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol 145:56–61. doi: 10.1007/BF00413027 CrossRefGoogle Scholar
  7. Fiala G, Stetter KO, Jannasch HW, Langworthy TA, Madon J (1986) Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98 °C. Syst Appl Microbiol 8:106–113CrossRefGoogle Scholar
  8. Gorlas A, Croce O, Oberto J, Gauliard E, Forterre P, Marguet E (2014) Thermococcus nautili sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal deep-sea vent. Int J Syst Evol Microbiol 64:1802–1810CrossRefPubMedGoogle Scholar
  9. Hall JR, Mitchell KR, Jackson-Weaver O et al (2008) Molecular characterization of the diversity and distribution of a thermal spring microbial community by using rRNA and metabolic genes. Appl Environ Microbiol. doi: 10.1128/AEM.00233-08 Google Scholar
  10. Han Y, Perner M (2015) The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines. Front Microbiol 6:989PubMedPubMedCentralGoogle Scholar
  11. Huber R, Langworthy TA, König H et al (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol. doi: 10.1007/BF00409880 Google Scholar
  12. Huber R, Wilharm T, Huber D et al (1992) Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. System Appl Microbiol 15:340–351CrossRefGoogle Scholar
  13. Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone Hot Spring. J Bacteriol 180:366–376PubMedPubMedCentralGoogle Scholar
  14. Huson DH, Beier S, Flade I, Górska A et al (2016) MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol 12:e1004957CrossRefPubMedPubMedCentralGoogle Scholar
  15. Inagaki F, Takai K, Kobayashi H, Nelson KH, Horikoshi K (2003) Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ε-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 53:1801–1805CrossRefPubMedGoogle Scholar
  16. Jahnke LL, Eder W, Huber R et al (2001) Signature lipids and stable carbon isotope analyses of octopus spring hyperthermophilic communities compared with those of Aquificales representatives. Appl Environ Microbiol 67:5179–5189. doi: 10.1128/AEM.67.11.5179-5189.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kawaichi S, Ito N, Yoshida T, Sako Y (2013) Bacterial and archael diversity in an iron-rich coastal hydrothermal field in Yamagawa, Kagoshima, Japan. Microb Environ 28:405–413CrossRefGoogle Scholar
  18. Kurr M, Huber R, König H et al (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110 °C. Arch Microbiol 156:239–247. doi: 10.1007/BF00262992 CrossRefGoogle Scholar
  19. Longnecker K, Reysenbach AL (2001) Expansion of the geographic distribution of a novel lineage of epsilon-Proteobacteria to a hydrothermal vent site on the Southern East Pacific Rise. FEMS Microbiol Ecol 35:287–293. doi: 10.1111/j.1574-6941.2001.tb00814.x PubMedGoogle Scholar
  20. Madigan T, Oren Aharon (1999) Thermophilic and halophilic and extremophiles. Curr Opin Microbiol 2:265–269CrossRefPubMedGoogle Scholar
  21. Miller DN, Bryant JE, Madsen EL et al (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65:4715–4724PubMedPubMedCentralGoogle Scholar
  22. Moyer CL, Dobbs FC, Karl DM (1995) Phylogenetic diversity of the bacterial community from a microbial mat at an active hydrothermal vent system, Loihi Seamount, Hawai. Appl Environ Microbiol 61:1555–1562PubMedPubMedCentralGoogle Scholar
  23. Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer Academic Publishers, London, pp 3.4.4.1–3.4.4.27 Google Scholar
  24. Nacke H, Thurmer A, Wollherr A et al (2011) Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One 6:e17000. doi: 10.1371/journal.pone.0017000 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nakagawa S, Takai K, Horikoshi K, Saki Y (2004) Aeropyrum camini sp. nov., a strictly aerobic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 54:329–335CrossRefPubMedGoogle Scholar
  26. Nakagawa S, Takai K, Inagaki F et al (2005) Distribution, phylogenetic diversity and physiological characteristics of ε-Proteobacteria in a deep-sea hydrothermal field. Environ Microbiol 7:1619–1632. doi: 10.1111/j.1462-2920.2005.00856.x CrossRefPubMedGoogle Scholar
  27. Nakagawa T, Takai K, Suzuki Y et al (2006) Geomicrobiological exploration and characterization of a novel deep-sea hydrothermal system at the TOTO caldera in the Mariana Volcanic Arc. Environ Microbiol 8:37–49. doi: 10.1111/j.1462-2920.2005.00884.x CrossRefPubMedGoogle Scholar
  28. Neuner A, Jannasch HW, Belkin S, Stetter KO (1990) Thermoccous litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch Microbiol 153:205–207CrossRefGoogle Scholar
  29. Peng Y, Leung HCM, Yiu SM, Chin FYL (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28:1420–1428. doi: 10.1093/bioinformatics/bts174 CrossRefPubMedGoogle Scholar
  30. Purcell D, Sompong U, Yim LC et al (2007) The effects of temperature, pH and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand. FEMS Microbiol Ecol 60:456–466. doi: 10.1111/j.1574-6941.2007.00302.x CrossRefPubMedGoogle Scholar
  31. Reysenbach Anna-Louise, Ehringer Marissa, Hershberger K (2000) Microbial diversity at 83 °C in Calcite Springs, Yellowstone National Park: another environment where the Aquificales and “Korarchaeota” coexist. Extremophiles 4:61–67PubMedGoogle Scholar
  32. Sahm K, John P, Nacke H et al (2013) High abundance of heterotrophic prokaryotes in hydrothermal springs of the Azores as revealed by a network of 16S rRNA gene-based methods. Extremophiles. doi: 10.1007/s00792-013-0548-2 PubMedGoogle Scholar
  33. Stetter KO (1989) Extremely thermophilic chemolithotrophic archaebacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria, Science Tech Publishers Madison, and Springer-Verlag, Berlin, Heidelberg, New York,London,Paris, Tokyo, pp167–176Google Scholar
  34. Stetter KO (1996) Hyperthermophiles in the history of life. Ciba Found Symp. doi: 10.1098/rstb.2006.1907 PubMedGoogle Scholar
  35. Stetter KO, König H, Stackebrandt E (1983) Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105 °C. Syst Appl Microbiol 4:535–551CrossRefPubMedGoogle Scholar
  36. Takai K, Inagaki F, Nakagawa S et al (2003) Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218:167–174. doi: 10.1111/j.1574-6968.2003.tb11514.x PubMedGoogle Scholar
  37. Yim LC, Hongmei J, Aitchison JC, Pointing SB (2006) Highly diverse community structure in a remote central Tibetan geothermal spring does not display monotonic variation to thermal stress. FEMS Microbiol Ecol 57:80–91. doi: 10.1111/j.1574-6941.2006.00104.x CrossRefPubMedGoogle Scholar
  38. Zeng X, Zhang X, Jiang L, Alain K, Jebbar M, Shao Z (2013) Palaeococcus pacificus sp. nov., an archaeon from deep-sea hydrothermal sediment. Int J Syst Evol Microbiol 63:2155–2159CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2017

Authors and Affiliations

  • Garabed Antranikian
    • 1
  • Marcel Suleiman
    • 1
  • Christian Schäfers
    • 1
  • Michael W. W. Adams
    • 2
  • Simonetta Bartolucci
    • 2
  • Jenny M. Blamey
    • 2
  • Nils-Kåre Birkeland
    • 2
  • Elizaveta Bonch-Osmolovskaya
    • 2
  • Milton S. da Costa
    • 2
  • Don Cowan
    • 2
  • Michael Danson
    • 2
  • Patrick Forterre
    • 2
  • Robert Kelly
    • 2
  • Yoshizumi Ishino
    • 2
  • Jennifer Littlechild
    • 2
  • Marco Moracci
    • 2
  • Kenneth Noll
    • 2
  • Tairo Oshima
    • 2
  • Frank Robb
    • 2
  • Mosè Rossi
    • 2
  • Helena Santos
    • 2
  • Peter Schönheit
    • 2
  • Reinhard Sterner
    • 2
  • Rudolf Thauer
    • 2
  • Michael Thomm
    • 2
  • Jürgen Wiegel
    • 2
  • Karl Otto Stetter
    • 2
    • 3
  1. 1.Institute of Technical MicrobiologyHamburg University of TechnologyHamburgGermany
  2. 2.Pyrotoga TeamHamburgGermany
  3. 3.University of RegensburgRegensburgGermany

Personalised recommendations