, Volume 21, Issue 3, pp 499–511 | Cite as

Bacterial diversity in fumarole environments of the Paricutín volcano, Michoacán (Mexico)

  • Miguel Medrano-Santillana
  • Elcia Margaret Souza-Brito
  • Robert Duran
  • Felix Gutierrez-Corona
  • Georgina Elena Reyna-López
Original Paper


Active volcanoes are among the most extreme environments on Earth. The extreme temperatures, presence of toxic heavy metals and low nutrient bioavailability favor the development of extremophiles. We characterized the physical–chemical parameters of and bacterial communities (T-RFLP and 16S rRNA gene libraries) inhabiting fumarole niches of the Paricutín volcano located in Michoacán (Mexico). This volcano, which surged in 1943, is one of the youngest volcanoes on Earth and the microbial diversity in this area is yet to be characterized. The sampling stations were characterized in a pH range from 5.34 to 7.89 and showed different temperatures (soil, 27–87 °C; air, 13.6–56 °C) with high concentrations of metals such as iron and arsenic. The most abundant bacterial populations, confirmed by T-RFLP and 16S rRNA gene libraries, were related to members of Firmicutes and Proteobacteria phyla including sequences associated with thermophiles and sulfate reducing bacteria. Overall, the Paricutín volcano showed low bacterial diversity and its prokaryotic diversity was characterized by the impossibility of amplifying Archaea-related sequences.


Extreme environments Bacterial communities T-RFLP 16S rRNA gene 



The authors thank the members of the MELODY group for useful discussion. This project was supported by ECOS-NORD (M07A01), CONACyT (Consejo Nacional de Ciencia y Tecnología) and Universidad de Guanajuato. Medrano S. M. was supported in Mexico and France by a scholarship. We acknowledge the Regional Platform for Environmental Microbiology PREMICE supported by the Aquitaine Regional Government Council for research facilities. We thank Sally Ferguson (Alba Traduction) for carefully checking the English language. Reviewers are gratefully acknowledged for their helpful comments.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

792_2017_920_MOESM1_ESM.docx (718 kb)
Supplementary material 1 (DOCX 717 KB)


  1. Ackerman C, Anderson S, Anderson C (2007) Diversity of thermophilic microorganisms within Hawaiian fumaroles. In: AGU Fall Meeting Abstracts, vol 1, p 0854Google Scholar
  2. Aguilera M, De la Luz Mora M, Borie G, Peirano P, Zunino H (2002) Balance and distribution of sulphur in volcanic ash-derived soils in Chile. Soil Biol Biochem 34:1355–1361 doi: 10.1016/S0038-0717(02)00080-9 CrossRefGoogle Scholar
  3. Amaral A, Cruz J, Cunha RTd, Rodrigues A (2006) Baseline levels of metals in volcanic soils of the Azores (Portugal). Soil Sedim Contam 15:123–130CrossRefGoogle Scholar
  4. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736. doi: 10.1128/aem.71.12.7724-7736.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Benson CA, Bizzoco RW, Lipson DA, Kelley ST (2011) Microbial diversity in nonsulfur, sulfur and iron geothermal steam vents. FEMS Microbiol Ecol 76:74–88. doi: 10.1111/j.1574-6941.2011.01047.x CrossRefPubMedGoogle Scholar
  6. Bordenave S, Fourçans A, Blanchard S, Goñi MS, Caumette P, Duran R (2004a) Structure and functional analyses of bacterial communities changes in microbial mats following petroleum exposure. Ophelia 58:195–203CrossRefGoogle Scholar
  7. Bordenave S, Jézéque R, Fourçans A, Budzinski H, Merlin FX, Fourel T, Goñi-Urriza M, Guyoneaud R, Grimaud R, Caumette P, Duran R (2004b) Degradation of the “Erika” oil. Aquat Living Resour 17:261–267. doi: 10.1051/alr:2004027 CrossRefGoogle Scholar
  8. Borie F, Rubio R (2003) Total and organic phosphorus in Chilean volcanic soils. Gayana Bot 60:69–78CrossRefGoogle Scholar
  9. Brito EMS, Duran R, Guyoneaud R, Goñi-Urriza M, García de Oteyza T, Crapez MAC, Aleluia I, Wasserman JCA (2009) A case study of in situ oil contamination in a mangrove swamp (Rio De Janeiro, Brazil). Mar Pollut Bull 58:418–423. doi: 10.1016/j.marpolbul.2008.12.008 CrossRefPubMedGoogle Scholar
  10. Brito EMS, Villegas-Negrete N, Sotelo-González IA, Caretta CA, Goñi-Urriza M, Gassie C, Hakil F, Colin Y, Duran R, Gutiérrez-Corona F, Piñón-Castillo HA, Cuevas-Rodríguez G, Malm O, Torres JPM, Fahy A, Reyna-López GE, Guyoneaud R (2014) Microbial diversity in Los Azufres geothermal field (Michoacán, Mexico) and isolation of representative sulfate and sulfur reducers. Extremophiles 18:385–398. doi: 10.1007/s00792-013-0624-7 CrossRefPubMedGoogle Scholar
  11. Bruneel O, Pascault N, Egal M, Bancon-Montigny C, Goñi-Urriza MS, Elbaz-Poulichet F, Personné JC, Duran R (2008) Archaeal diversity in a Fe–As rich acid mine drainage at Carnoulès (France). Extremophiles 12:563–571. doi: 10.1007/s00792-008-0160-z CrossRefPubMedGoogle Scholar
  12. Burrows SM, Elbert W, Lawrence MG, Pöschl U (2009) Bacteria in the global atmosphere—Part 1: review and synthesis of literature data for different ecosystems. Atmos Chem Phys 9:9263–9280CrossRefGoogle Scholar
  13. Caretta CA, Brito EM (2011) In silico restriction analysis for identifying microbial communities in T-RFLP fingerprints. J Comp Int Sci 2:123–129Google Scholar
  14. Carlier JP, Bonne I, Bedora-Faure M (2006) Isolation from canned foods of a novel Thermoanaerobacter species phylogenetically related to Thermoanaerobacter mathranii (Larsen 1997): emendation of the species description and proposal of Thermoanaerobacter mathranii subsp. Alimentarius subsp. Nov. Anaerobe 12:153–159. doi: 10.1016/j.anaerobe.2006.03.003 CrossRefPubMedGoogle Scholar
  15. Chao A, Lee SM (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87:210–217. doi: 10.1080/01621459.1992.10475194 CrossRefGoogle Scholar
  16. Cheng TW, Lin LH, Lin YT, Song SR, Wang PL (2014) Temperature-dependent variations in sulfate-reducing communities associated with a terrestrial hydrocarbon seep. Microbes Environ 29:377–387 doi: 10.1264/jsme2.ME14086 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cockell C, Olsson-Francis K, Herrera A, Meunier A (2009) Alteration textures in terrestrial volcanic glass and the associated bacterial community. Geobiology 7:50–65CrossRefPubMedGoogle Scholar
  18. Costello EK, Halloy SRP, Reed SC, Sowell P, Schmidt SK (2009) Fumarole-supported islands of biodiversity within a hyperarid, high-elevation landscape on socompa volcano, puna de atacama, andes. Appl Environ Microbiol 75:735–747. doi: 10.1128/AEM.01469-08 CrossRefPubMedGoogle Scholar
  19. Cravo-Laureau C, Duran R (2014) Marine coastal sediments microbial hydrocarbon degradation processes: Contribution of experimental ecology in the omics’era. Front Microbiol 5. doi: 10.3389/fmicb.2014.00039
  20. Curtis AC, Wheat CG, Fryer P, Moyer CL (2013) Mariana forearc serpentinite mud volcanoes harbor novel communities of extremophilic archaea. Geomicrobiol J 30:430–441. doi: 10.1080/01490451.2012.705226 CrossRefGoogle Scholar
  21. Delfosse T, Delmelle P, Iserentant A, Delvaux B (2003) Heavy Metal concentrations in soils downwind from Masaya Volcano (Nicaragua). In: AGU Fall Meeting Abstracts, p 0525Google Scholar
  22. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689. doi: 10.1073/pnas.89.12.5685 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dias M, Salvado JC, Monperrus M, Caumette P, Amouroux D, Duran R, Guyoneaud R (2008) Characterization of Desulfomicrobium salsuginis sp. nov. and Desulfomicrobium aestuarii sp. nov., two new sulfate-reducing bacteria isolated from the Adour estuary (French Atlantic coast) with specific mercury methylation potentials. Syst Appl Microbiol 31:30–37. doi: 10.1016/j.syapm.2007.09.002 CrossRefPubMedGoogle Scholar
  24. Dœlsch E, Saint Macary H, Van de Kerchove V (2006) Sources of very high heavy metal content in soils of volcanic island (La Réunion). J Geochem Explor 88:194–197. doi: 10.1016/j.gexplo.2005.08.037 CrossRefGoogle Scholar
  25. Ellis DG, Bizzoco RW, Kelley ST (2008) Halophilic Archaea determined from geothermal steam vent aerosols. Environ Microbiol 10:1582–1590. doi: 10.1111/j.1462-2920.2008.01574.x CrossRefPubMedGoogle Scholar
  26. Emerson D, Moyer CL (2010) Microbiology of seamounts: common patterns observed in community structure. Oceanography 23:148–163CrossRefGoogle Scholar
  27. Espinosa-Rodríguez LM, Balderas-Plata M, Cabadas-Báez HV (2014) Caracterización geomorfológica del área natural protegida nevado de Toluca: complejo de volcanes nevado de Toluca y San Antonio. CienciaUAT 9:06–14Google Scholar
  28. Fahy A, Giloteaux L, Bertin P, Le Paslier D, Médigue C, Weissenbach J, Duran R, Lauga B (2015) 16S rRNA and As-related functional diversity: contrasting fingerprints in arsenic-rich sediments from an acid mine drainage. Microb Ecol 70:154–167. doi: 10.1007/s00248-014-0558-3 CrossRefPubMedGoogle Scholar
  29. Faure D, Bonin P, Duran R (2015a) Environmental microbiology reveals the Earth secret life. Environ Sci Pollut Res 22:13573–13576 doi: 10.1007/s11356-015-4968-7 CrossRefGoogle Scholar
  30. Faure D, Bonin P, Duran R, Amato P, Arsène-Ploetze F, Auguet JC, Bernard L, Bertin PN, Bettarel Y, Bigot-Clivot A, Blot N, Blouin M, Bormans M, Bouvy M, Bruneel O, Cébron A, Christaki U, Couée I, Cravo-Laureau C, Danger M, De Lorgeril J, Desdevises Y, Dessaux Y, Destoumieux-Garzón D, Duprat E, Erauso G, El Zahar Haichar F, Fouilland E, Francez AJ, Fromin N, Geffard A, Ghiglione JF, Grossi V, Guizien K, Hubas C, Huguet A, Jardillier L, Jouquet P, Joux F, Kaisermann A, Kaltz O, Lata JC, Lecerf A, Leyval C, Luis P, Masseret E, Niboyet A, Normand P, Plewniak F, Poly F, Prado S, Quaiser A, Ratet P, Richaume A, Rolland JL, Rols JL, Rontani JF, Rossi F, Sablé S, Sivadon P, Soudant P, Tamburini C, Tribollet A, Moro CV, Van Wambeke F, Vandenkoornhuyse P, Vuilleumier S (2015b) Environmental microbiology as a mosaic of explored ecosystems and issues. Environ Sci Pollut Res 22:13577–13598 doi: 10.1007/s11356-015-5164-5 CrossRefGoogle Scholar
  31. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364. doi: 10.1890/05-1839 CrossRefPubMedGoogle Scholar
  32. Francis P (1993) Volcanoes: a planetary perspective. In: Francis P (ed) Volcanoes: a planetary perspective. Clarendon Press, Oxford, p 452Google Scholar
  33. Gallego V, Sánchez-Porro C, García MT, Ventosa A (2006) Massilia aurea sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 56:2449–2453. doi: 10.1099/ijs.0.64389-0 CrossRefPubMedGoogle Scholar
  34. Giloteaux L, Goñi-Urriza M, Duran R (2010) Nested PCR and new primers for analysis of sulfate-reducing bacteria in low-cell-biomass environments. Appl Environ Microbiol 76:2856–2865. doi: 10.1128/AEM.02023-09 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Giovannoni SJ, Schabtach E, Castenholz RW (1987) Isosphaera pallida, gen. and comb. nov., a gliding, budding eubacterium from hot springs. Arch Microbiol 147:276–284. doi: 10.1007/BF00463488 CrossRefGoogle Scholar
  36. Good I, Toulmin G (1956) The number of new species, and the increase in population coverage, when a sample is increased. Biometrika 43:45–63CrossRefGoogle Scholar
  37. Green PN, Bousfield IJ, Hood D (1988) Three new methylobacterium species: M. rhodesianum sp. nov, M. zatmanii sp. nov., and M. fujisawaense sp. nov. Int J Syst Bacteriol 38:124–127CrossRefGoogle Scholar
  38. Guyoneaud R, Mouné S, Eatock C, Bothorel V, Hirschler-Réa A, Willison J, Duran R, Liesack W, Herbert R, Matheron R, Caumette P (2002) Characterization of three spiral-shaped purple nonsulfur bacteria isolated from coastal lagoon sediments, saline sulfur springs, and microbial mats: emended description of the genus Roseospira and description of Roseospira marina sp. nov., Roseospira navarrensis sp. nov., and Roseospira thiosulfatophila sp. nov. Arch Microbiol 178:315–324. doi: 10.1007/s00203-002-0454-y CrossRefPubMedGoogle Scholar
  39. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  40. Hattori S, Kamagata Y, Hanada S, Shoun H (2000) Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Micr 50:1601–1609CrossRefGoogle Scholar
  41. Herrera A, Cockell CS (2007) Exploring microbial diversity in volcanic environments: a review of methods in DNA extraction. J Microbiol Meth 70:1–12. doi: 10.1016/j.mimet.2007.04.005 CrossRefGoogle Scholar
  42. Hewson I, Fuhrman JA (2006) Improved strategy for comparing microbial assemblage fingerprints. Microb Ecol 51:147–153. doi: 10.1007/s00248-005-0144-9 CrossRefPubMedGoogle Scholar
  43. Hynek BM, McCollom TM, Rogers KL (2011) Cerro negro volcano, Nicaragua: an assessment of geological and potential biological systems on early mars. vol 483. doi: 10.1130/2011.2483(18)
  44. Kelly LC, Cockell CS, Herrera-Belaroussi A, Piceno Y, Andersen G, DeSantis T, Brodie E, Thorsteinsson T, Marteinsson V, Poly F (2011) Bacterial diversity of terrestrial crystalline volcanic rocks, Iceland. Microb ecol 62:69–79CrossRefPubMedGoogle Scholar
  45. Kelly LC, Cockell CS, Thorsteinsson T, Marteinsson V, Stevenson J (2014) Pioneer microbial communities of the Fimmvörðuháls lava flow, Eyjafjallajökull, Iceland. Microb Ecol 68:504–518CrossRefPubMedGoogle Scholar
  46. Kishimoto N, Kosako Y, Tano T (1991) Acidobacterium capsulatum gen. nov., sp. nov.: An acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr Microbiol 22:1–7. doi: 10.1007/BF02106205 CrossRefGoogle Scholar
  47. Lane D (1991) 16S/23 S rRNA sequencing. In: Stachenbrady E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 125–175Google Scholar
  48. Lee YJ, Dashti M, Prange A, Rainey FA, Rohde M, Whitman WB, Wiegel J (2007) Thermoanaerobacter sulfurigignens sp. nov., an anaerobic thermophilic bacterium that reduces 1 M thiosulfate to elemental sulfur and tolerates 90 mM sulfite. Int J Syst Evol Microbiol 57:1429–1434. doi: 10.1099/ijs.0.64748-0 CrossRefPubMedGoogle Scholar
  49. Li H, Yang Q, Li J, Gao H, Li P, Zhou H (2015) The impact of temperature on microbial diversity and AOA activity in the Tengchong Geothermal Field, China. Sci Rep 5 doi: 10.1038/srep17056
  50. Lincoln SP, Fermor TR, Tindall BJ (1999) Janthinobacterium agaricidamnosum sp. nov., a soft rot pathogen of Agaricus bisporus. Int J Syst Bacteriol 49:1577–1589CrossRefPubMedGoogle Scholar
  51. Madhaiyan M, Kim BY, Poonguzhali S, Kwon SW, Song MH, Ryu JH, Go SJ, Koo BS, Sa TM (2007) Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. Int J Syst Evol Microbiol 57:326–331. doi: 10.1099/ijs.0.64603-0 CrossRefPubMedGoogle Scholar
  52. Mayhew LE, Geist DJ, Childers S, Pierson J (2007) Microbial community comparisons as a function of the physical and geochemical conditions of Galápagos Island fumaroles. Geomicrobiol J 24:615–625. doi: 10.1080/01490450701672133 CrossRefGoogle Scholar
  53. Munsch P, Alatossava T, Marttinen N, Meyer JM, Christen R, Gardan L (2002) Pseudomonas costantinii sp. nov., another causal agent of brown blotch disease, isolated from cultivated mushroom sporophores in Finland. Int J Syst Evol Microbiol 52:1973–1983. doi: 10.1099/ijs.0.02090-0 PubMedGoogle Scholar
  54. NMX-AA-132-SCFI-2006 (2006) Soil sampling for metal and semimetal identification and quantification, and sample handling.
  55. Nocker A, Burr M, Camper AK (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54:276–289. doi: 10.1007/s00248-006-9199-5 CrossRefPubMedGoogle Scholar
  56. Nunoura T, Akihara S, Takai K, Sako Y (2002) Thermaerobacter nagasakiensis sp. nov., a novel aerobic and extremely thermophilic marine bacterium. Arch Microbiol 177:339–344. doi: 10.1007/s00203-002-0398-2 CrossRefPubMedGoogle Scholar
  57. Orthová I, Kämpfer P, Glaeser SP, Kaden R, Busse HJ (2015) Massilia norwichensis sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 65:56–64. doi: 10.1099/ijs.0.068296-0 CrossRefPubMedGoogle Scholar
  58. Perevalova AA, Kolganova TV, Birkeland N-K, Schleper C, Bonch-Osmolovskaya EA, Lebedinsky AV (2008) Distribution of Crenarchaeota representatives in terrestrial hot springs of Russia and Iceland. Appl Environ Microbiol 74:7620–7628CrossRefPubMedPubMedCentralGoogle Scholar
  59. Pires AL, Albuquerque L, Tiago I, Nobre MF, Empadinhas N, Veríssimo A, Da Costa MS (2005) Meiothermus timidus sp. nov., a new slightly thermophilic yellow-pigmented species. FEMS Microbiol Lett 245:39–45. doi: 10.1016/j.femsle.2005.02.011 CrossRefPubMedGoogle Scholar
  60. Polymenakou PN (2012) Atmosphere: a source of pathogenic or beneficial microbes? Atmosphere 3:87–102. doi: 10.3390/atmos3010087 CrossRefGoogle Scholar
  61. Pringault O, Duran R, Jacquet S, Torréton JP (2008) Temporal variations of microbial activity and diversity in marine tropical sediments (New Caledonia Lagoon). Microb Ecol 55:247–258. doi: 10.1007/s00248-007-9272-8 CrossRefPubMedGoogle Scholar
  62. Rampelotto PH (2013) Extremophiles and extreme environments. Life 3:482–485. doi: 10.3390/life3030482 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rodríguez-Elizarrarás S, Komorowski JC, Jiménez V, Siebe C (1993) El libro-Guía de la excursión geológica al Volcán Parícutin, Estado de Michoacán, México. Inst Geol UNAM:47Google Scholar
  64. Said OB, Goñi-Urriza M, Bour ME, Aissa P, Duran R (2010) Bacterial community structure of sediments of the bizerte lagoon (Tunisia), a southern mediterranean coastal anthropized lagoon. Microb Ecol 59:445–456. doi: 10.1007/s00248-009-9585-x CrossRefPubMedGoogle Scholar
  65. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  66. Schloss PD, Girard RA, Martin T, Edwards J, Thrash JC (2016) Status of the archaeal and bacterial census: An update. mBio 7. doi: 10.1128/mBio.00201-16
  67. Schulze R, Spring S, Amann R, Huber I, Ludwig W, Schleifer KH, Kämpfer P (1999) Genotypic diversity of Acidovorax strains isolated from activated sludge and description of Acidovorax defluvii sp. nov. Syst Appl Microbiol 22:205–214CrossRefPubMedGoogle Scholar
  68. Schütte UME, Abdo Z, Bent SJ, Shyu C, Williams CJ, Pierson JD, Forney LJ (2008) Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biot 80:365–380. doi: 10.1007/s00253-008-1565-4 CrossRefGoogle Scholar
  69. Shen L, Liu Y, Wang N, Yao T, Jiao N, Liu H, Zhou Y, Xu B, Liu X (2013) Massilia yuzhufengensis sp. nov., isolated from an ice core. Int J Syst Evol Microbiol 63:1285–1290. doi: 10.1099/ijs.0.042101-0 CrossRefPubMedGoogle Scholar
  70. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K (1997) Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47:289–298CrossRefPubMedGoogle Scholar
  71. Shiratori H, Ohiwa H, Ikeno H, Ayame S, Kataoka N, Miya A, Beppu T, Ueda K (2008) Lutispora thermophila gen. nov., sp. nov., a thermophilic, spore-forming bacterium isolated from a thermophilic methanogenic bioreactor digesting municipal solid wastes. Int J Syst Evol Microbiol 58:964–969. doi: 10.1099/ijs.0.65490-0 CrossRefPubMedGoogle Scholar
  72. Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376. doi: 10.1128/AEM.67.9.4374-4376.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Soil Screening Guidance: User’s Guide Publication 2nd edition (1996)
  74. Sprent JI (1993) The role of nitrogen fixation in primary succession on land. In: Miles J, Walton DWH (eds) Primary succession on land. Blackwell Scientific Publications, Boston, pp 209–219Google Scholar
  75. Stauffert M, Cravo-Laureau C, Jézéquel R, Barantal S, Cuny P, Gilbert F, Cagnon C, Militon C, Amouroux D, Mahdaoui F, Bouyssiere B, Stora G, Merlin FX, Duran R (2013) Impact of oil on bacterial community structure in bioturbated sediments. PLoS One 8. doi: 10.1371/journal.pone.0065347
  76. Stauffert M, Duran R, Gassie C, Cravo-Laureau C (2014) Response of archaeal communities to oil spill in bioturbated mudflat sediments. Microb Ecol 67:108–119. doi: 10.1007/s00248-013-0288-y CrossRefPubMedGoogle Scholar
  77. Stauffert M, Cravo-Laureau C, Duran R (2015) Dynamic of sulphate-reducing microorganisms in petroleum-contaminated marine sediments inhabited by the polychaete Hediste diversicolor. Environ Sci Pollut Res 22:15273–15284 doi: 10.1007/s11356-014-3624-y CrossRefGoogle Scholar
  78. Stott MB, Crowe MA, Mountain BW, Smirnova AV, Hou S, Alam M, Dunfield PF (2008) Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. Environ Microbiol 10:2030–2041. doi: 10.1111/j.1462-2920.2008.01621.x CrossRefPubMedGoogle Scholar
  79. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Taniai T, Wakasugi S, Hashimoto S, Shimada A, Urabe T, Takahashi K, Tanaka M (2012) Elution behaviour and environmental impact of heavy metals and rare-earth elements from volcanic ashes of Mt. Oyama, Miyake Island. Int J Environ Anal Chem 92:601–612. doi: 10.1080/03067310903359559 CrossRefGoogle Scholar
  81. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi: 10.1093/nar/22.22.4673 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Tobler DJ, Benning LG (2011) Bacterial diversity in five Icelandic geothermal waters: temperature and sinter growth rate effects. Extremophiles 15:473–485CrossRefPubMedGoogle Scholar
  83. Uetanabaro AP, Wahrenburg C, Hunger W, Pukall R, Spröer C, Stackebrandt E, de Canhos VP, Claus D, Fritze D (2003) Paenibacillus agarexedens sp. nov., nom. rev., and Paenibacillus agaridevorans sp. Nov. Int J Syst Evol Microbiol 53:1051–1057 doi: 10.1099/ijs.0.02420-0 CrossRefPubMedGoogle Scholar
  84. Van Kranendonk MJ, Pirajno F (2004) Geochemistry of metabasalts and hydrothermal alteration zones associated with c. 3.45 Ga chert and barite deposits: implications for the geological setting of the Warrawoona group, Pilbara Craton, Australia. Geochem Explor Environ A 4:253–278. doi: 10.1144/1467-7873/04-205 CrossRefGoogle Scholar
  85. Wall K, Cornell J, Bizzoco RW, Kelley ST (2015) Biodiversity hot spot on a hot spot: novel extremophile diversity in Hawaiian fumaroles. Microbiol Open 4:267–281. doi: 10.1002/mbo3.236 CrossRefGoogle Scholar
  86. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefPubMedPubMedCentralGoogle Scholar
  87. Weon HY, Kim BY, Son JA, Jang HB, Hong SK, Go SJ, Kwon SW (2008) Massilia aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 58:1422–1425. doi: 10.1099/ijs.0.65419-0 CrossRefPubMedGoogle Scholar
  88. Weon HY, Yoo SH, Kim YJ, Son JA, Kim BK, Kwon SW, Koo BS (2009) Chitinophaga niabensis sp. nov. and Chitinophaga niastensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 59:1267–1271. doi: 10.1099/ijs.0.004804-0 CrossRefPubMedGoogle Scholar
  89. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153. doi: 10.1099/ijs.0.63407-0 CrossRefPubMedGoogle Scholar
  90. Yoon JH, Kang SJ, Oh TK (2007) Pedobacter terrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 57:2462–2466. doi: 10.1099/ijs.0.64727-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2017

Authors and Affiliations

  • Miguel Medrano-Santillana
    • 1
  • Elcia Margaret Souza-Brito
    • 2
  • Robert Duran
    • 3
  • Felix Gutierrez-Corona
    • 1
  • Georgina Elena Reyna-López
    • 1
  1. 1.Departamento de BiologíaUniversidad de GuanajuatoGuanajuatoMexico
  2. 2.Ingeniería Ambiental, División de IngenieríasUniversidad de GuanajuatoGuanajuatoMexico
  3. 3.Equipe Environnement et Microbiologie-MELODY group-UMR IPREM5254BP 1155 Université de Pau et des Pays de l‘AdourPau CedexFrance

Personalised recommendations