, Volume 21, Issue 2, pp 271–282 | Cite as

Insertion sequences enrichment in extreme Red sea brine pool vent

Original Paper


Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world’s largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.


Mobile genetic elements Insertion sequences Extremophiles Deep-sea hydrothermal vents Red Sea brine pools 



Activated sludge


Atlantis II Deep


BR, brine


Discovery Deep


Horizontal gene transfer


Integron abundance index


Brine-water interface


Insertion sequences


Insertion sequence abundance index


Kebrit Deep


Lower convective layer


Mobile genetic elements


Plasmid abundance index


Quality control


Sequence Read Archive


Upper convective layer


United States



This work was initially supported by King Abdullah University for Science and Technology Global Collaborative Partners (GCR) program. The work was funded by an American University in Cairo Faculty (Research) Support Grant to RS. AHAE was funded by a Youssef Jameel PhD Fellowship. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. We thank the crew and scientists on board of the KAUST Red Sea Expedition in spring 2010 and 2012, in particular, chief scientists Drs. Abdulaziz Al-Suwailem and Andre Antunes. We acknowledge Dr. Ahmed Abdelaziz and Amged Ouf of the American University in Cairo for DNA preparation and Mustafa Adel for assistance with the bioinformatics analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

792_2016_900_MOESM1_ESM.pdf (293 kb)
Table S1 Metadata for datasets investigated in this study. Table S2 Characteristics of sequencing data. Table S3 Analysis of Variance (ANOVA) and multiple comparisons for analyzed MGEs. Table S4 Relative abundance of bacterial and archaeal genera among IS-annotated reads. (PDF 292 kb)


  1. Abdallah RZ et al (2014) Aerobic methanotrophic communities at the Red Sea brine-seawater interface. Front Microbiol. doi: 10.3389/fmicb.2014.00487 PubMedPubMedCentralGoogle Scholar
  2. Adel M, Elbehery AHA, Aziz SK, Aziz RK, Grossart H-P, Siam R (2016) Viruses-to-mobile genetic elements skew in the deep Atlantis II brine pool sediments Scientific Reports 6:32704. doi: 10.1038/srep32704 PubMedGoogle Scholar
  3. Anderson RE, Sogin ML, Baross JA (2014) Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics. PLoS One 9:e109696. doi: 10.1371/journal.pone.0109696 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anschutz P (2015) Hydrothermal activity and paleoenvironments of the Atlantis II Deep. In: Rasul MAN, Stewart CFI (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer, Berlin, pp 235–249. doi: 10.1007/978-3-662-45201-1_14
  5. Antunes A, Ngugi DK, Stingl U (2011) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep 3:416–433. doi: 10.1111/j.1758-2229.2011.00264.x
  6. Aziz RK, Breitbart M, Edwards RA (2010) Transposases are the most abundant, most ubiquitous genes in nature. Nucleic Acids Res 38:4207–4217. doi: 10.1093/nar/gkq140 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Aziz RK, Dwivedi B, Akhter S, Breitbart M, Edwards RA (2015) Multidimensional metrics for estimating phage abundance, distribution, gene density, and sequence coverage in metagenomes. Front Microbiol 6:381. doi: 10.3389/fmicb.2015.00381 PubMedPubMedCentralGoogle Scholar
  8. Bakermans C (2015) Extreme environments as model systems for the study of microbial evolution. In: Bakermans C (ed) Microbial evolution under extreme conditions, vol 2. Walter de Gruyter GmbH & Co KG, Göttingen, pp 1–18Google Scholar
  9. Baliga NS et al (2004) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 14:2221–2234. doi: 10.1101/gr.2700304 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Baross J, Hoffman S (1985) Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins Life Evol Biosphere 15:327–345. doi: 10.1007/BF01808177 CrossRefGoogle Scholar
  11. Baya AM, Brayton PR, Brown VL, Grimes DJ, Russek-Cohen E, Colwell RR (1986) Coincident plasmids and antimicrobial resistance in marine bacteria isolated from polluted and unpolluted Atlantic Ocean samples. Appl Environ Microbiol 51:1285–1292PubMedPubMedCentralGoogle Scholar
  12. Bougouffa S, Yang JK, Lee OO, Wang Y, Batang Z, Al-Suwailem A, Qian PY (2013) Distinctive microbial community structure in highly stratified deep-Sea brine water columns. Appl Environ Microbiol 79:3425–3437. doi: 10.1128/aem.00254-13 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brazelton WJ, Baross JA (2009) Abundant transposases encoded by the metagenome of a hydrothermal chimney biofilm. ISME J 3:1420–1424. doi: 10.1038/ismej.2009.79 CrossRefPubMedGoogle Scholar
  14. Brüssow H, Canchaya C, Hardt W-D (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602. doi: 10.1128/MMBR.68.3.560-602.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chakravorty D, Shreshtha AK, Babu VRS, Patra S (2012) Molecular evolution of extremophiles. In: Extremophiles: sustainable resources and biotechnological implications. Wiley, Hoboken, New Jersey, pp 1–27. doi: 10.1002/9781118394144.ch1
  16. Chao Y, Ma L, Yang Y, Ju F, Zhang X-X, Wu W-M, Zhang T (2013) Metagenomic analysis reveals significant changes of microbial compositions and protective functions during drinking water treatment Sci Rep 3:e3550. doi: 10.1038/srep03550 Google Scholar
  17. Chen WM, Wu CH, James EK, Chang JS (2008) Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J Hazard Mater 151:364–371. doi: 10.1016/j.jhazmat.2007.05.082 CrossRefPubMedGoogle Scholar
  18. Chen B, Yang Y, Liang X, Yu K, Zhang T, Li X (2013) Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments. Environ Sci Technol 47:12753–12760. doi: 10.1021/es403818e CrossRefPubMedGoogle Scholar
  19. Chojnacka A, Szczęsny P, Błaszczyk MK, Zielenkiewicz U, Detman A, Salamon A, Sikora A (2015) Noteworthy facts about a methane-producing microbial community processing acidic effluent from sugar beet molasses fermentation. PLoS One 10:e0128008. doi: 10.1371/journal.pone.0128008 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Clokie MRJ, Millard AD, Letarov AV, Heaphy S (2011) Phages in nature. Bacteriophage 1:31–45. doi: 10.4161/bact.1.1.14942 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cserháti M et al (2012) De Novo Genome Project of Cupriavidus basilensis OR16. J Bacteriol 194:2109–2110. doi: 10.1128/JB.06752-11 CrossRefPubMedPubMedCentralGoogle Scholar
  22. DeLong EF et al (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503. doi: 10.1126/science.1120250 CrossRefPubMedGoogle Scholar
  23. Di Giulio M (2003) The universal ancestor was a thermophile or a hyperthermophile: tests and further evidence. J Theor Biol 221:425–436CrossRefPubMedGoogle Scholar
  24. Drevinek P et al (2010) Oxidative stress of Burkholderia cenocepacia induces insertion sequence-mediated genomic rearrangements that interfere with macrorestriction-based genotyping. J Clin Microbiol 48:34–40. doi: 10.1128/jcm.01433-09 CrossRefPubMedGoogle Scholar
  25. Elbehery AH, Aziz RK, Siam R (2016) Antibiotic resistome: improving detection and quantification accuracy for comparative metagenomics OMICS. J Integr Biol 20:229–238. doi: 10.1089/omi.2015.0191 Google Scholar
  26. Elsaied H, Stokes HW, Nakamura T, Kitamura K, Fuse H, Maruyama A (2007) Novel and diverse integron integrase genes and integron-like gene cassettes are prevalent in deep-sea hydrothermal vents. Environ Microbiol 9:2298–2312. doi: 10.1111/j.1462-2920.2007.01344.x CrossRefPubMedGoogle Scholar
  27. Ferreira AJS et al (2014) Core microbial functional activities in ocean environments revealed by global metagenomic profiling analyses. PLoS One 9:e97338. doi: 10.1371/journal.pone.0097338 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Filée J, Siguier P, Chandler M (2007) Insertion sequence diversity in Archaea. Microbiol Mol Biol Rev 71:121–157. doi: 10.1128/MMBR.00031-06 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Finnegan DJ (2012) Retrotransposons. Current Biology 22:R432–R437. doi: 10.1016/j.cub.2012.04.025 CrossRefPubMedGoogle Scholar
  30. Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732CrossRefPubMedGoogle Scholar
  31. Gaze WH et al (2013) Influence of humans on evolution and mobilization of environmental antibiotic resistome. Emerg Infect Dis 19:e120871. doi: 10.3201/eid1907.120871 CrossRefPubMedCentralGoogle Scholar
  32. Gillings MR, Gaze WH, Pruden A, Smalla K, Tiedje JM, Zhu Y-G (2015) Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J 9:1269–1279. doi: 10.1038/ismej.2014.226 CrossRefPubMedGoogle Scholar
  33. Goo YA et al (2004) Low-pass sequencing for microbial comparative genomics. BMC Genom 5:1–19. doi: 10.1186/1471-2164-5-3 CrossRefGoogle Scholar
  34. Gregory ST, Dahlberg AE (2008) Transposition of an insertion sequence, ISTth7, in the genome of the extreme thermophile Thermus thermophilus HB8. FEMS Microbiol Lett 289:187–192. doi: 10.1111/j.1574-6968.2008.01389.x CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hartmann M, Scholten JC, Stoffers P (1998) Hydrographic structure of brine-filled deeps in the Red Sea: correction of Atlantis II Deep temperatures. Mar Geol 144:331–332. doi: 10.1016/S0025-3227(97)00126-6 CrossRefGoogle Scholar
  36. Hennet R-C, Holm N, Engel M (1992) Abiotic synthesis of amino acids under hydrothermal conditions and the origin of life: a perpetual phenomenon? Naturwissenschaften 79:361–365CrossRefPubMedGoogle Scholar
  37. Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17:377–386. doi: 10.1101/gr.5969107 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Janssen PJ et al (2010) The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 5:e10433. doi: 10.1371/journal.pone.0010433 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Laroche-Ajzenberg E, Flores Ribeiro A, Bodilis J, Riah W, Buquet S, Chaftar N, Pawlak B (2015) Conjugative multiple-antibiotic resistance plasmids in Escherichia coli isolated from environmental waters contaminated by human faecal wastes. J Appl Microbiol 118:399–411. doi: 10.1111/jam.12691 CrossRefPubMedGoogle Scholar
  40. Lessie TG, Hendrickson W, Manning BD, Devereux R (1996) Genomic complexity and plasticity of Burkholderia cepacia. FEMS Microbiol Lett 144:117–128. doi: 10.1111/j.1574-6968.1996.tb08517.x CrossRefPubMedGoogle Scholar
  41. Markowitz VM et al (2014) IMG/M 4 version of the integrated metagenome comparative analysis system. Nucleic Acids Res 42:D568–D573. doi: 10.1093/nar/gkt919 CrossRefPubMedGoogle Scholar
  42. Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6:805–814. doi: 10.1038/nrmicro1991 PubMedGoogle Scholar
  43. Mergeay M, Van Houdt R (2014) Adaptation to xenobiotics and toxic compounds by Cupriavidus and Ralstonia with special reference to Cupriavidus metallidurans CH34 and mobile genetic elements. In: Nojiri H, Tsuda M, Fukuda M, Kamagata Y (eds) Biodegradative bacteria: How bacteria degrade, survive, adapt, and evolve. Springer, Tokyo, pp 105–127. doi: 10.1007/978-4-431-54520-0_6
  44. Meyer F et al (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:1–8. doi: 10.1186/1471-2105-9-386 CrossRefGoogle Scholar
  45. Mijnendonckx K, Provoost A, Monsieurs P, Leys N, Mergeay M, Mahillon J, Van Houdt R (2011) Insertion sequence elements in Cupriavidus metallidurans CH34: distribution and role in adaptation. Plasmid 65:193–203. doi: 10.1016/j.plasmid.2010.12.006
  46. Moura A, Soares M, Pereira C, Leitao N, Henriques I, Correia A (2009) INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. Bioinformatics (Oxford, England) 25:1096–1098 doi: 10.1093/bioinformatics/btp105
  47. Nelson WC, Wollerman L, Bhaya D, Heidelberg JF (2011) Analysis of insertion sequences in thermophilic cyanobacteria: exploring the mechanisms of establishing, maintaining, and withstanding high insertion sequence abundance. Appl Environ Microbiol 77:5458–5466. doi: 10.1128/aem.05090-11 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Niu B, Fu L, Sun S, Li W (2010) Artificial and natural duplicates in pyrosequencing reads of metagenomic data BMC bioinformatics 11:187. doi: 10.1186/1471-2105-11-187 PubMedGoogle Scholar
  49. Ohtsubo Y, Genka H, Komatsu H, Nagata Y, Tsuda M (2005) High-temperature-induced transposition of insertion elements in Burkholderia multivorans ATCC 17616. Appl Environ Microbiol 71:1822–1828. doi: 10.1128/aem.71.4.1822-1828.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740. doi: 10.1126/science.276.5313.734 CrossRefPubMedGoogle Scholar
  51. Pasternak C, Ton-Hoang B, Coste G, Bailone A, Chandler M, Sommer S (2010) Irradiation-induced Deinococcus radiodurans genome fragmentation triggers transposition of a single resident insertion sequence. PLoS Genet 6:e1000799. doi: 10.1371/journal.pgen.1000799 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Port JA, Wallace JC, Griffith WC, Faustman EM (2012) Metagenomic profiling of microbial composition and antibiotic resistance determinants in Puget Sound. PLoS One 7:e48000. doi: 10.1371/journal.pone.0048000 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Pruitt K, Brown G, Tatusova T, Maglott D (2002) The Reference Sequence (RefSeq) Database. National Library of Medicine (US), National Center for Biotechnology Information, Bethesda, MD, USAGoogle Scholar
  54. Rusch A, Islam S, Savalia P, Amend JP (2015) Burkholderia insulsa sp. nov., a facultatively chemolithotrophic bacterium isolated from an arsenic-rich shallow marine hydrothermal system. Int J Syst Evol Microbiol 65:189–194. doi: 10.1099/ijs.0.064477-0 CrossRefPubMedGoogle Scholar
  55. Sanapareddy N, Hamp TJ, Gonzalez LC, Hilger HA, Fodor AA, Clinton SM (2009) Molecular diversity of a North Carolina wastewater treatment plant as revealed by pyrosequencing. Appl Environ Microbiol 75:1688–1696. doi: 10.1128/aem.01210-08 CrossRefPubMedGoogle Scholar
  56. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics (Oxford, England) 27:863–864 doi: 10.1093/bioinformatics/btr026
  57. Seckbach J, Rampelotto PH (2015) Polyextremophiles. In: Bakermans C (ed) Microbial evolution under extreme conditions, vol 2. Walter de Gruyter GmbH & Co KG, Göttingen, pp 153–170Google Scholar
  58. Shah AA, Nawaz A, Kanwal L, Hasan F, Khan S, Badshah M (2015) Degradation of poly(ε-caprolactone) by a thermophilic bacterium Ralstonia sp. strain MRL-TL isolated from hot spring. Int Biodeterior Biodegradation 98:35–42. doi: 10.1016/j.ibiod.2014.11.017 CrossRefGoogle Scholar
  59. Siam R et al (2012) Unique prokaryotic consortia in geochemically distinct sediments from Red Sea Atlantis II and Discovery Deep brine pools. PLoS One 7:e42872. doi: 10.1371/journal.pone.0042872 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Siguier P, Filée J, Chandler M (2006a) Insertion sequences in prokaryotic genomes. Curr Opin Microbiol 9:526–531. doi: 10.1016/j.mib.2006.08.005 CrossRefPubMedGoogle Scholar
  61. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M (2006b) ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34:D32–D36. doi: 10.1093/nar/gkj014 CrossRefPubMedGoogle Scholar
  62. Smith MW, Zeigler Allen L, Allen AE, Herfort L, Simon HM (2013) Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem Frontiers in microbiology 4:120. doi: 10.3389/fmicb.2013.00120 PubMedGoogle Scholar
  63. Sutrisno A, Ueda M, Abe Y, Nakazawa M, Miyatake K (2004) A chitinase with high activity toward partially N-acetylated chitosan from a new, moderately thermophilic, chitin-degrading bacterium, Ralstonia sp. A-471. Appl Microbiol Biotechnol 63:398–406. doi: 10.1007/s00253-003-1351-2 CrossRefPubMedGoogle Scholar
  64. Swift SA, Bower AS, Schmitt RW (2012) Vertical, horizontal, and temporal changes in temperature in the Atlantis II and Discovery hot brine pools, Red Sea. Deep Sea Res Part I Oceanogr Res Papers 64:118–128. doi: 10.1016/j.dsr.2012.02.006 CrossRefGoogle Scholar
  65. Touchon M, Rocha EPC (2007) Causes of insertion sequences abundance in prokaryotic genomes. Mol Biol Evol 24:969–981. doi: 10.1093/molbev/msm014 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Ali H. A. Elbehery
    • 1
  • Ramy K. Aziz
    • 2
  • Rania Siam
    • 1
    • 3
  1. 1.Graduate Program of Biotechnology, School of Sciences and EngineeringThe American University in CairoNew CairoEgypt
  2. 2.Department of Microbiology and Immunology, Faculty of PharmacyCairo UniversityCairoEgypt
  3. 3.Department of Biology, School of Sciences and EngineeringThe American University in CairoNew CairoEgypt

Personalised recommendations