Skip to main content
Log in

Biodegradation of polycyclic aromatic hydrocarbons by an acidophilic Stenotrophomonas maltophilia strain AJH1 isolated from a mineral mining site in Saudi Arabia

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The present study aims at analyzing the degradation of polycyclic aromatic hydrocarbons (PAHs) at acidic conditions (pH = 2) by acidophilic Stenotrophomonas maltophilia strain AJH1 (KU664513). The strain AJH1 was obtained from an enrichment culture obtained from soil samples of mining area in the presence of PAH as sole sources of carbon and energy. Strain AJH1was able to degrade low (anthracene, phenanthrene, naphthalene, fluorene) and high (pyrene, benzo(e)pyrene and benzo(k)fluoranthene) molecular weight PAHs in acidophilic mineral salt medium at pH 2, with removal rates of up to 95% (LMW PAH) and 80% (HMW PAH), respectively. In addition, strain AJH1 treated petroleum wastewater with 89 ± 1.1% COD removal under acidic condition (pH 2) in a continuously stirred reactor. Acidophilic S. maltophilia strain AJH1, hence holds the promise as an effective degrader for biological treatment of PAHs contaminated wastewater at acidic pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akcil A, Koldas S (2006) Acid mine drainage (AMD): causes, treatment and case studies. J Clean Prod 14:1139–1145

    Article  Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington

    Google Scholar 

  • Arulazhagan P, Vasudevan N (2009) Role of moderately halophilic bacterial consortium in biodegradation of polyaromatic hydrocarbons. Mar Poll Bull 58:256–262

    Article  CAS  Google Scholar 

  • Arulazhagan P, Vasudevan N (2011) Role of nutrients in the utilization of PAHs by halotolerant bacterial strain. J Environ Sci 23:282–287

    Article  CAS  Google Scholar 

  • Arulazhagan P, Vasudevan N, Yeom IT (2010) Biodegradation of polycyclic aromatic hydrocarbon by a halotolerant bacterial consortium isolated from marine environment. Int J Environ Sci Tech 7(4):639–652

    Article  CAS  Google Scholar 

  • Baker AC, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171

    Article  Google Scholar 

  • Beales N (2004) Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress. Comp Rev Food sci Food saf 3(1):1–20

    Article  CAS  Google Scholar 

  • Booth IR, Kroll RG (1989) The preservation of foods by low pH. In: Gould GW (ed) Mechanisms of action of food preservation procedures. Elsevier Applied Science, London, pp 119–160

    Google Scholar 

  • Brown MH, Booth IR (1991) Acidulants and low pH. In: Russell NJ, Gould GW (eds) Food preservatives. Blackie, Glasgow, pp 22–43

    Google Scholar 

  • Cismasiu CM (2011) The adaptation of gram-negative bacteria to acidic environmental conditions with implication in heavy metals removal processes. Rom Biotechnol Lett 16(6):10–18

    CAS  Google Scholar 

  • Dertli E, Mayer MJ, Narbad A (2015) Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785. BMC Microbiol 15(1):8. doi:10.1186/s12866-015-0347-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Dore SY, Clancy QE, Rylee SM, Kulpa CF (2003) Naphthalene utilizing and mercury-resistant bacteria isolated from an acidic environment. Appl Microbiol Biotechnol 63:194–199

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • England AH, Duffin AM, Schwartz CP, Uejio JS, Prendergast D, Saykally RJ (2011) On the hydration and hydrolysis of carbon dioxide. Chem Phy Lett 514:187–195

    Article  CAS  Google Scholar 

  • Fischer J, Quentmeier A, Gansel S, Sabados V, Friedrich CG (2002) Inducible aluminum resistance of Acidiphilium cryptum and aluminum tolerance of other acidophilic bacteria. Arch Microbiol 178:554–558

    Article  CAS  PubMed  Google Scholar 

  • Frank JA, Claudia IR, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74(8):2461–2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuno S, Remer R, Chatzinotas A, Harms H, Wick LY (2012) Fungal mycelia as paths for the isolation of contaminant degrading soil bacteria. Microb Biotechnol 5:142–148

    Article  CAS  PubMed  Google Scholar 

  • Gemmell RT, Knowles CJ (2000) Utilisation of aliphatic compounds by acidophilic heterotrophic bacteria. The potential for bioremediation of acidic wastewaters contaminated with toxic organic compounds and heavy metals. FEMS Microbiol Lett 192:185–190

    Article  CAS  PubMed  Google Scholar 

  • Hall HK, Karem KL, Foster JW (1995) Molecular responses of microbes to environmental pH stress. Adv Microbiol Phys 37:229–264

    Article  CAS  Google Scholar 

  • Hamamura N, Olson SH, Ward DM, Inskeep WP (2005) Diversity and functional analysis of bacterial communities associated with natural hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National Park. Appl Environ Microbiol 71:5943–5950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison AP (1981) Acidiphilium cryptum gen. nov.,sp. nov., Heterotrophic bacterium from acidic mineral environments. Int J System Bact 31(3):327–332

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Poll 133:71–84

    Article  CAS  Google Scholar 

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, New Jersey, p 600

    Google Scholar 

  • Li YH, Hanna MN, Svensater G, Ellen RP, Cvitkovitch DG (2001) Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J Bacteriol 183(23):6875–6884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Tang H, Lin Z, Xu P (2015) Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol Adv 33(7):1484–1492

    Article  CAS  PubMed  Google Scholar 

  • Luthy RG, Dzombak DA, Peters CA, Roy SB, Ramaswami A, Nakles DV, Nott BR (1994) Remediating tar-contaminated soils at manufactured gas plant sites. Environ Sci Technol 28:266A–276A

    Article  CAS  Google Scholar 

  • Mukherjee P, Roy P (2012) Identification and characterisation of a bacterial isolate capable of growth on trichloroethylene as the sole carbon source. Adv Microbiol 2:284–294

    Article  Google Scholar 

  • Roling WFM (2010) Hydrocarbon-Degradation by Acidophilic Microorganisms, Handbook of hydrocarbon and lipid microbiology, part 19, pp 1923–1930

  • Roling WFM, Ortega-Lucach S, Larter SR, Head IM (2006) Acidophilic microbial communities associated with a natural, biodegraded hydrocarbon seepage. J Appl Microbiol 101:290–299

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Khara P, Dutta TK (2012) meta-Cleavage of hydroxynaphthoic acids in the degradation of phenanthrene by Sphingobium sp. strain PNB. Microbiol 158:685–695

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Kumar K, Pandey AK, Sharma A, Singh SB, Kumar K, Arora A, Nain L (2015) Pyrene degradation by biosurfactant producing bacterium Stenotrophomonas maltophilia. Agric Res 4(1):42–47

    Article  Google Scholar 

  • Stapleton RD, Savage DC, Sayler GS, Stacey G (1998) Biodegradation of aromatic hydrocarbons in an extremely acidic environment. Appl Environ Microbiol 64:4180–4184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai JC, Kumar M, Lin JG (2009) Anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway. J Hazard Mater 164(2–3):847–855

    Article  CAS  PubMed  Google Scholar 

  • Uyttebroek M, Vermeir S, Wattiau P, Ryngaert A, Springael D (2007) Characterization of cultures enriched from acidic polycyclic aromatic hydrocarbon-contaminated soil for growth on pyrene at low pH. Appl Environ Microbiol 73:3159–3164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Qian PY (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 4(10):e7401

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeinali M, Vossoughi M, Ardestani SK (2008) Degradation of phenanthrene and anthracene by Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic bacterium. J Appl Microbiol 105:398–406

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH)—King Abdulaziz City for Science and Technology—the Kingdom of Saudi Arabia—Award Number (11-ENV2012-03). The authors also, acknowledge with thanks Science and Technology Unit, King Abdulaziz University for technical support. The authors thank Petro Rabigh, Saudi Arabia for providing the wastewater samples. The authors also thank Dr. Lukas Y. Wick, Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Germany for his guidance as a consultant during the project work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Arulazhagan.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Additional information

Communicated by H. Atomi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arulazhagan, P., Al-Shekri, K., Huda, Q. et al. Biodegradation of polycyclic aromatic hydrocarbons by an acidophilic Stenotrophomonas maltophilia strain AJH1 isolated from a mineral mining site in Saudi Arabia. Extremophiles 21, 163–174 (2017). https://doi.org/10.1007/s00792-016-0892-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0892-0

Keywords

Navigation