, Volume 21, Issue 1, pp 153–161 | Cite as

Identification of a VapBC toxin–antitoxin system in a thermophilic bacterium Thermus thermophilus HB27

  • Yuqi Fan
  • Takayuki Hoshino
  • Akira Nakamura
Original Paper


There are 12 putative toxin–antitoxin (TA) loci in the Thermus thermophilus HB27 genome, including four VapBC and three HicBA families. Expression of these seven putative toxin genes in Escherichia coli demonstrated that one putative VapC toxin TTC0125 and two putative HicA toxins, TTC1395 and TTC1705, inhibited cell growth, and co-expression with cognate antitoxin genes rescued growth, indicating that these genes function as TA loci. In vitro analysis with the purified TTC0125 and total RNA/mRNA from E. coli and T. thermophilus showed that TTC0125 has RNase activity to rRNA and mRNA; this activity was inhibited by the addition of the purified TTC0126. Translation inhibition assays showed that TTC0125 inhibited protein synthesis by degrading mRNA but not by inactivating ribosomes. Amino acid substitutions of 14 predicted catalytic and conserved residues in VapC toxins to Ala or Asp in TTC0125 indicated that nine residues are important for its in vivo toxin activity and in vitro RNase activity. These data demonstrate that TTC0125-TTC0126 functions as a VapBC TA module and causes growth inhibition by degrading free RNA. This is the first study to identify the function of TA systems in T. thermophilus.


Thermus thermophilus Toxin–antitoxin system VapBC Ribonuclease 









Polyacrylamide gel electrophoresis


Phosphate-buffered saline







Supplementary material

792_2016_891_MOESM1_ESM.pdf (425 kb)
Supplementary material 1 (PDF 425 kb)


  1. Arcus VL, Mckenzie JL, Robson J, Cook GM (2011) The PIN-domain ribonucleases and the prokaryotic VapBC toxin–antitoxin array. Protein Eng Des Sel 24:33–40CrossRefPubMedGoogle Scholar
  2. Bertram R, Schuster CF (2014) Post-transcriptional regulation of gene expression in bacterial pathogens by toxin–antitoxin systems. Front Cell Infect Microbiol 4:6CrossRefPubMedPubMedCentralGoogle Scholar
  3. Butt A, Higman V, Williams C, Crump MP, Hemsley CM, Harmer N, Titball RW (2014) The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation. Biochem J 459:333–344CrossRefPubMedPubMedCentralGoogle Scholar
  4. Christensen SK, Gerdes K (2003) RelE toxins from Bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA. Mol Microbiol 48:1389–1400CrossRefPubMedGoogle Scholar
  5. Daines DA, Wu MH, Yuan SY (2007) VapC-1 of nontypeable Haemophilus influenzae is a ribonuclease. J Bacteriol 189:5041–5048CrossRefPubMedPubMedCentralGoogle Scholar
  6. Fauvart M, De Groote VN, Michiels J (2011) Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J Med Microbiol 60:699–709CrossRefPubMedGoogle Scholar
  7. Gerdes K, Christensen SK, Løbner-Olesen A (2005) Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol 3:371–382CrossRefPubMedGoogle Scholar
  8. Germain E, Castro-Roa D, Zenkin N, Gerdes K (2013) Molecular mechanism of bacterial persistence by HipA. Mol Cell 52:248–254CrossRefPubMedGoogle Scholar
  9. Griffiths E, Gupta RS (2007) Identification of signature proteins that are distinctive of the Deinococcus-Thermus phylum. Int Microbiol 10:201–208PubMedGoogle Scholar
  10. Grønlund H, Gerdes K (1999) Toxin–antitoxin systems homologous with relBE of Escherichia coli plasmid P307 are ubiquitous in prokaryotes. J Mol Biol 285:1401–1415CrossRefPubMedGoogle Scholar
  11. Hazan R, Engelberg-Kulka H (2004) Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Mol Genet Genomic 272:227–234CrossRefGoogle Scholar
  12. Henne A, Brüggemann H, Raasch C, Wiezer A, Hartsch T, Liesegang H, Fritz HJ (2004) The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol 22:547–553CrossRefPubMedGoogle Scholar
  13. Jørgensen MG, Pandey DP, Jaskolska M, Gerdes K (2009) HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea. J Bacteriol 191:1191–1199CrossRefPubMedGoogle Scholar
  14. Kelly LA, Mezulis S, Yates CM, Wass MW, Sternberg MJE (2015) The Phyre2 web portal for protein modelling, prediction, and analysis. Nat Protoc 10:845–858CrossRefGoogle Scholar
  15. Koyama Y, Hoshino T, Tomizuka N, Furukawa K (1986) Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. J Bacteriol 166:338–340CrossRefPubMedPubMedCentralGoogle Scholar
  16. Krupovic M, Gonnet M, Hania WB, Forterre P, Erauso G (2013) Insights into dynamics of mobile genetic elements in hyperthermophilic environments from five new Thermococcus plasmids. PLoS One 8:e49044CrossRefPubMedPubMedCentralGoogle Scholar
  17. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  18. Li G, Shen M, Lu S et al (2016) Identification and characterization of the HicAB toxin–antitoxin system in the opportunistic pathogen Pseudomonas aeruginosa. Toxins 8:113CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lutz R, Bujard H (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 25:1203–1210CrossRefPubMedPubMedCentralGoogle Scholar
  20. Maezato Y, Daugherty A, Dana K et al (2011) VapC6, a ribonucleolytic toxin regulates thermophilicity in the crenarchaeote Sulfolobus solfataricus. RNA 17:1381–1392CrossRefPubMedPubMedCentralGoogle Scholar
  21. Maisonneuve E, Gerdes K (2014) Molecular mechanisms underlying bacterial persisters. Cell 157:539–548CrossRefPubMedGoogle Scholar
  22. Maisonneuve E, Castro-Camargo M, Gerdes K (2013) (p)ppGpp controls bacterial persistence by stochastic induction of toxin–antitoxin activity. Cell 154:1140–1150CrossRefPubMedGoogle Scholar
  23. Makarova KS, Grishin NV, Koonin EV (2006) The HicAB cassette, a putative novel, RNA-targeting toxin–antitoxin system in archaea and bacteria. Bioinformatics 22:2581–2584CrossRefPubMedGoogle Scholar
  24. Makarova KS, Wolf YI, Koonin EV (2009) Comprehensive comparative-genomic analysis of type 2 toxin–antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct 4:19CrossRefPubMedPubMedCentralGoogle Scholar
  25. McKenzie JL, Duyvestyn JM, Smith T et al (2012) Determination of ribonuclease sequence-specificity using Pentaprobes and mass spectrometry. RNA 18:1267–1278CrossRefPubMedPubMedCentralGoogle Scholar
  26. Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217CrossRefPubMedGoogle Scholar
  27. Omelchenko MV, Wolf YI, Gaidamakova EK et al (2005) Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance. BMC Evol Biol 5:57CrossRefPubMedPubMedCentralGoogle Scholar
  28. Oshima T, Imahori K (1974) Physiochemical properties of deoxyribonucleic acid from an extreme thermophile. J Biochem (Tokyo) 75:179–183Google Scholar
  29. Page R, Peti W (2016) Toxin–antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol 12:208–214CrossRefPubMedGoogle Scholar
  30. Pandey DP, Gerdes K (2005) Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33:966–976CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pecota DC, Wood TK (1996) Exclusion of T4 phage by the hok/sok killer locus from plasmid R1. J Bacteriol 178:2044–2050CrossRefPubMedPubMedCentralGoogle Scholar
  32. Pongs O, Bald R, Erdmann VA (1973) Identification of chloramphenicol-binding protein in Escherichia coli ribosomes by affinity labeling. Proc Natl Acad Sci USA 70:2229–2233CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ramage HR, Connolly LE, Cox JS (2009) Comprehensive functional analysis of Mycobacterium tuberculosis toxin–antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 5:e1000767CrossRefPubMedPubMedCentralGoogle Scholar
  34. Shao Y, Harrison EM, Bi D et al (2011) TADB: a web-based resource for Type 2 toxin-antitoxin loci in bacteria and archaea. Nucleic Acids Res 39:D606–D611CrossRefPubMedGoogle Scholar
  35. Sharp JD, Cruz JW, Raman S, Inouye M, Husson RN, Woychik NA (2012) Growth and translation inhibition through sequence-specific RNA binding by Mycobacterium tuberculosis VapC toxin. J Biol Chem 287:12835–12847CrossRefPubMedPubMedCentralGoogle Scholar
  36. Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755CrossRefPubMedGoogle Scholar
  37. Trauner A, Bennett MH, Williams HD (2011) Isolation of bacterial ribosomes with monolith chromatography. PLoS One 6:e16273CrossRefPubMedPubMedCentralGoogle Scholar
  38. Unterholzner SJ, Poppenberger B, Rozhon W (2013) Toxin–antitoxin systems: Biology, identification and application. Mob Genet Elements 3:e26219CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wang X, Wood TK (2011) Toxin–antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl Environ Microbiol 77:5577–5583CrossRefPubMedPubMedCentralGoogle Scholar
  40. Winther KS, Gerdes K (2011) Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA. Proc Natl Acad Sci USA 108:7403–7407CrossRefPubMedPubMedCentralGoogle Scholar
  41. Winther KS, Brodersen DE, Brown AK, Gerdes K (2013) VapC20 of Mycobacterium tuberculosis cleaves the sarcin-ricin loop of 23S rRNA. Nat Commun 4:2796CrossRefPubMedGoogle Scholar
  42. Yamaguchi Y, Inouye M (2011) Regulation of growth and death in Escherichia coli by toxin–antitoxin systems. Nat Rev Microbiol 9:779–790CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations