Extremophiles

, Volume 20, Issue 5, pp 747–757 | Cite as

Analysis of the bacteriorhodopsin-producing haloarchaea reveals a core community that is stable over time in the salt crystallizers of Eilat, Israel

Original Paper

Abstract

Stability of microbial communities can impact the ability of dispersed cells to colonize a new habitat. Saturated brines and their halophile communities are presumed to be steady state systems due to limited environmental perturbations. In this study, the bacteriorhodopsin-containing fraction of the haloarchaeal community from Eilat salt crystallizer ponds was sampled five times over 3 years. Analyses revealed the existence of a constant core as several OTUs were found repeatedly over the length of the study: OTUs comprising 52 % of the total cloned and sequenced PCR amplicons were found in every sample, and OTUs comprising 89 % of the total sequences were found in more than one, and often more than two samples. LIBSHUFF and UNIFRAC analyses showed statistical similarity between samples and Spearman’s coefficient denoted significant correlations between OTU pairs, indicating non-random patterns in abundance and co-occurrence of detected OTUs. Further, changes in the detected OTUs were statistically linked to deviations in salinity. We interpret these results as indicating the existence of an ever-present core bacteriorhodopsin-containing Eilat crystallizer community that fluctuates in population densities, which are controlled by salinity rather than the extinction of some OTUs and their replacement through immigration and colonization.

Keywords

Haloarchaea Temporal analysis Seasonal Community stability Thalassohaline Eilat 

Supplementary material

792_2016_864_MOESM1_ESM.pdf (555 kb)
Supplementary material 1 (PDF 555 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  2. Anderson TW (1962) On the distribution of the two-sample Cramer-von Mises criterion. Ann Math Stat. doi:10.1214/aoms/1177704477 Google Scholar
  3. Antón J, Llobet-Brossa E, Rodríguez-Valera F, Amann R (1999) Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol 1:517–523CrossRefPubMedGoogle Scholar
  4. Bardgett RD, Lovell RD, Hobbs PJ, Jarvis SC (1999) Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biol Biochem 31:1021–1030. doi:10.1016/S0038-0717(99)00016-4 CrossRefGoogle Scholar
  5. Benlloch S, Martínez-Murcia AJ, Rodríguez-Valera F (1995) Sequencing of bacterial and archaeal 16S rRNA genes directly amplified from a hypersaline environment. Syst Appl Microbiol 18:574–581. doi:10.1016/S0723-2020(11)80418-2 CrossRefGoogle Scholar
  6. Benlloch S, Acinas SG, Antón J, López-López A, Luz SP, Rodríguez-Valera F (2001) Archaeal biodiversity in crystallizer ponds from a solar saltern: culture versus PCR. Microb Ecol 41:12–19. doi:10.1007/s002480000069 PubMedGoogle Scholar
  7. Benlloch S et al (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4:349–360CrossRefPubMedGoogle Scholar
  8. Bidle K, Amadio W, Oliveira P, Paulish T, Hicks S, Earnest C (2005) Research article: a phylogenetic analysis of haloarchaea found in a solar saltern. BIOS 76:89–96. doi:10.1893/0005-3155(2005)076[0089:RAAPAO]2.0.CO;2Google Scholar
  9. Boucher Y, Douady CJ, Sharma AK, Kamekura M, Doolittle WF (2004) Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J Bacteriol 186:3980–3990CrossRefPubMedPubMedCentralGoogle Scholar
  10. Boujelben I et al (2012) Spatial and seasonal prokaryotic community dynamics in ponds of increasing salinity of Sfax solar saltern in Tunisia. A Van Leeuw J Microb. doi:10.1007/s10482-012-9701-7 Google Scholar
  11. Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Statist 11:265–270Google Scholar
  12. Chao A, Lee S-M (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87:210–217CrossRefGoogle Scholar
  13. DeMaere MZ et al (2013) High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake. Proc Natl Acad Sci USA 110:16939–16944. doi:10.1073/pnas.1307090110 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dickerson TL, Williams HN (2014) Functional diversity of bacterioplankton in three North Florida freshwater lakes over an annual cycle. Microb Ecol 67:34–44. doi:10.1007/s00248-013-0304-2 CrossRefPubMedGoogle Scholar
  15. Dillon J, McMath L, Trout A (2009) Seasonal changes in bacterial diversity in the Salton Sea. Hydrobiologia 632:49–64. doi:10.1007/s10750-009-9827-4 CrossRefGoogle Scholar
  16. Dillon JG, Carlin M, Gutierrez A, Nguyen V, McLain N (2013) Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern, Baja CA Sur, Mexico. Front Microbiol 4:399. doi:10.3389/fmicb.2013.00399 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dyall-Smith M (ed) (2008) The halohandbook: protocols for haloarchaeal genetics, 7 edn. http://www.haloarchaea.com/resources/halohandbook/index.html
  18. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fernández AB, Vera-Gargallo B, Sanchez-Porro C, Ghai R, Papke RT, Rodríguez-Valera F, Ventosa A (2014) Comparison of prokaryotic community structure from Mediterranean and Atlantic saltern concentrator ponds by a metagenomic approach. Front Microbiol 5:196. doi:10.3389/fmicb.2014.00196 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ferris MJ, Ward DM (1997) Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl Environ Microbiol 63:1375–1381PubMedPubMedCentralGoogle Scholar
  21. Gasol J et al (2004) Control of heterotrophic prokaryotic abundance and growth rate in hypersaline planktonic environments. Aquat Microb Ecol 34:193–206CrossRefGoogle Scholar
  22. Ghai R et al (2011) New abundant microbial groups in aquatic hypersaline environments. Sci Rep 1:135. doi:10.1038/srep00135 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gomariz M, Martínez-García M, Santos F, Constantino M, Meseguer I, Antón J (2015a) Retinal-binding proteins mirror prokaryotic dynamics in multipond solar salterns. Environ Microbiol 17:514–526. doi:10.1111/1462-2920.12709 CrossRefPubMedGoogle Scholar
  24. Gomariz M et al (2015b) From community approaches to single-cell genomics: the discovery of ubiquitous hyperhalophilic Bacteroidetes generalists. ISME J 9:16–31. doi:10.1038/ismej.2014.95 CrossRefPubMedGoogle Scholar
  25. Grant S, Grant WD, Jones BE, Kato C, Li L (1999) Novel archaeal phylotypes from an East African alkaline saltern. Extremophiles Life Under Extreme Conditions 3:139–145CrossRefPubMedGoogle Scholar
  26. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010 CrossRefPubMedGoogle Scholar
  27. Hampel FR (1971) A general qualitative definition of robustness. Ann Math Stat 42:1887–1896CrossRefGoogle Scholar
  28. Javor BJ (1983) Planktonic standing crop and nutrients in a saltern ecosystem. Limnol Oceanogr 28:153–159. doi:10.4319/lo.1983.28.1.0153 CrossRefGoogle Scholar
  29. Legault BA, López-López A, Alba-Casado JC, Doolittle WF, Bolhuis H, Rodríguez-Valera F, Papke RT (2006) Environmental genomics of “Haloquadratum walsbyi” in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species. BMC Genom 7:171. doi:10.1186/1471-2164-7-171 CrossRefGoogle Scholar
  30. Litchfield CD (1998) Survival strategies for microorganisms in hypersaline environments and their relevance to life on early Mars. Meteorit Planet Sci 33:813–819CrossRefPubMedGoogle Scholar
  31. Litchfield CD, Gillevet PM (2002) Microbial diversity and complexity in hypersaline environments: a preliminary assessment. J Ind Microbiol Biotechnol 28:48–55. doi:10.1038/sj/jim/7000175 CrossRefPubMedGoogle Scholar
  32. Litchfield CD, Irby A, Kis-Papo T, Oren A (2000) Comparisons of the polar lipid and pigment profiles of two solar salterns located in Newark, California, USA, and Eilat, Israel. Extremophiles Life Under Extreme Conditions 4:259–265CrossRefPubMedGoogle Scholar
  33. Litchfield CD, Oren A, Irby A, Sikaroodi M, Gillevet PM (2009) Temporal and salinity impacts on the microbial diversity at the Eilat, Israel solar salt plant. Global NEST J 11:86–90Google Scholar
  34. Liu L, Yang J, Zhang Y (2011) Genetic diversity patterns of microbial communities in a subtropical riverine ecosystem (Jiulong River, southeast China). Hydrobiologia 678:113–125. doi:10.1007/s10750-011-0834-x CrossRefGoogle Scholar
  35. Liu L, Yang J, Yu X, Chen G, Yu Z (2013) Patterns in the composition of microbial communities from a subtropical river: effects of environmental, spatial and temporal factors. PLoS One 8:e81232. doi:10.1371/journal.pone.0081232 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lozupone C, Hamady M, Knight R (2006) UniFrac-an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinform 7:371. doi:10.1186/1471-2105-7-371 CrossRefGoogle Scholar
  37. Maddison D, Maddison W (2003) MacClade, 4.06 edn. Sinauer Associates, SunderlandGoogle Scholar
  38. Martínez-Murcia AJ, Acinas SG, Rodríguez-Valera F (1995) Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments. FEMS Microbiol Ecol 17:247–255. doi:10.1016/0168-6496(95)00029-A CrossRefGoogle Scholar
  39. Maturrano L, Santos F, Rosselló-Móra R, Antón J (2006) Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895. doi:10.1128/AEM.02214-05 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mutlu MB, Martínez-García M, Santos F, Peña A, Guven K, Antón J (2008) Prokaryotic diversity in Tuz Lake, a hypersaline environment in Inland Turkey. FEMS Microbiol Ecol 65:474–483. doi:10.1111/j.1574-6941.2008.00510.x CrossRefPubMedGoogle Scholar
  41. Mylvaganam S, Dennis PP (1992) Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui. Genetics 130:399–410PubMedPubMedCentralGoogle Scholar
  42. Narasingarao P et al (2012) De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J 6:81–93. doi:10.1038/ismej.2011.78 CrossRefPubMedGoogle Scholar
  43. Ochsenreiter T, Pfeifer F, Schleper C (2002) Diversity of archaea in hypersaline environments characterized by molecular-phylogenetic and cultivation studies. Extremophiles Life Under Extreme Conditions 6:267–274. doi:10.1007/s00792-001-0253-4 CrossRefPubMedGoogle Scholar
  44. Oesterhelt D, Stoeckenius W (1973) Functions of a new photoreceptor membrane. Proc Natl Acad Sci USA 70:2853–2857CrossRefPubMedPubMedCentralGoogle Scholar
  45. Oh D, Porter K, Russ B, Burns D, Dyall-Smith M (2010) Diversity of Haloquadratum and other haloarchaea in three, geographically distant, Australian saltern crystallizer ponds. Extremophiles Life Under Extreme Conditions 14:161–169. doi:10.1007/s00792-009-0295-6 CrossRefPubMedGoogle Scholar
  46. Oren A (2002a) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63. doi:10.1038/sj/jim/7000176 CrossRefPubMedGoogle Scholar
  47. Oren A (2002b) Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol Ecol 39:1–7. doi:10.1111/j.1574-6941.2002.tb00900.x CrossRefPubMedGoogle Scholar
  48. Oren A (2006) Life at high salt concentrations. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 263–282. doi:10.1007/0-387-30742-7_9 CrossRefGoogle Scholar
  49. Oren A, Shilo M (1981) Bacteriorhodopsin in a bloom of halobacteria in the Dead Sea. Arch Microbiol 130:185–187. doi:10.1007/BF00411075 CrossRefGoogle Scholar
  50. Oren A, Duker S, Ritter S (1996) The polar lipid composition of Walsby’s square bacterium. FEMS Microbiol Lett 138:135–140. doi:10.1016/0378-1097(96)00085-7 CrossRefGoogle Scholar
  51. Øvreås L, Daae FL, Torsvik V, Rodríguez-Valera F (2003) Characterization of microbial diversity in hypersaline environments by melting profiles and reassociation kinetics in combination with terminal restriction fragment length polymorphism (T-RFLP). Microb Ecol 46:291–301. doi:10.1007/s00248-003-3006-3 CrossRefPubMedGoogle Scholar
  52. Papke RT, Douady CJ, Doolittle WF, Rodríguez-Valera F (2003) Diversity of bacteriorhodopsins in different hypersaline waters from a single Spanish saltern. Environ Microbiol 5:1039–1045CrossRefPubMedGoogle Scholar
  53. Papke RT, Zhaxybayeva O, Feil EJ, Sommerfeld K, Muise D, Doolittle WF (2007) Searching for species in haloarchaea. Proc Natl Acad Sci USA 104:14092–14097. doi:10.1073/pnas.0706358104 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pašic L, Bartual SG, Ulrih NP, Grabnar M, Velikonja BH (2005) Diversity of halophilic archaea in the crystallizers of an Adriatic solar saltern. FEMS Microbiol Ecol 54:491–498. doi:10.1016/j.femsec.2005.06.004 CrossRefPubMedGoogle Scholar
  55. Pašic L, Ulrih NP, Crnigoj M, Grabnar M, Velikonja BH (2007) Haloarchaeal communities in the crystallizers of two adriatic solar salterns. Can J Microbiol 53:8–18CrossRefPubMedGoogle Scholar
  56. Podell S et al (2014) Seasonal fluctuations in ionic concentrations drive microbial succession in a hypersaline lake community. ISME J 8:979–990. doi:10.1038/ismej.2013.221 CrossRefPubMedGoogle Scholar
  57. Rodriguez RL, Overholt WA, Hagan C, Huettel M, Kostka JE, Konstantinidis KT (2015) Microbial community successional patterns in beach sands impacted by the deepwater horizon oil spill. ISME J 9:1928–1940. doi:10.1038/ismej.2015.5 CrossRefGoogle Scholar
  58. Rodriguez-Brito B et al (2010) Viral and microbial community dynamics in four aquatic environments. ISME J 4:739–751. doi:10.1038/ismej.2010.1 CrossRefPubMedGoogle Scholar
  59. Rogers BF, Tate RL (2001) Temporal analysis of the soil microbial community along a toposequence in Pineland soils. Soil Biol Biochem 33:1389–1401. doi:10.1016/S0038-0717(01)00044-X CrossRefGoogle Scholar
  60. Rosner B (1983) Percentage points for a generalized ESD many-outlier procedure. Technometrics 25:165–172. doi:10.2307/1268549 CrossRefGoogle Scholar
  61. Sabet S, Diallo L, Hays L, Jung W, Dillon JG (2009) Characterization of halophiles isolated from solar salterns in Baja California, Mexico. Extremophiles Life Under Extreme Conditions 13:643–656. doi:10.1007/s00792-009-0247-1 CrossRefPubMedGoogle Scholar
  62. Schloss PD et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/AEM.01541-09 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376CrossRefPubMedPubMedCentralGoogle Scholar
  64. Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15:72–101. doi:10.2307/1412159 CrossRefGoogle Scholar
  65. Stoeckenius W, Bivin D, McGinnis K (1985) Photoactive pigments in halobacteria from the Gavish Sabkha. In: Friedman G, Krumbein W (eds) Hypersaline ecosystems, vol 53. Ecological studies. Springer, Berlin Heidelberg, pp 288–295. doi:10.1007/978-3-642-70290-7_16
  66. Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630PubMedPubMedCentralGoogle Scholar
  67. Tavaré S (1986) Some probablilistic and statistical problems in the anlysis of DNA sequences. In: Miura RM (ed) Some mathematical questions in biology. American Mathematical Society, ProvidenceGoogle Scholar
  68. Tukey JW (1977) Exploratory data analysis. Addison-Wesley Publishing Company, BostonGoogle Scholar
  69. Väätänen P (1980) Effects of environmental factors on microbial populations in brackish waters off the southern coast of Finland. Appl Environ Microbiol 40:48–54PubMedPubMedCentralGoogle Scholar
  70. Walsh DA, Papke RT, Doolittle WF (2005) Archaeal diversity along a soil salinity gradient prone to disturbance. Environ Microbiol 7:1655–1666. doi:10.1111/j.1462-2920.2005.00864.x CrossRefPubMedGoogle Scholar
  71. Winter C, Hein T, Kavka G, Mach RL, Farnleitner AH (2007) Longitudinal changes in the bacterial community composition of the Danube River: a whole-river approach. Appl Environ Microbiol 73:421–431. doi:10.1128/AEM.01849-06 CrossRefPubMedGoogle Scholar
  72. Wright AD (2006) Phylogenetic relationships within the order Halobacteriales inferred from 16S rRNA gene sequences. Int J Syst Evol Microbiol 56:1223–1227. doi:10.1099/ijs.0.63776-0 CrossRefPubMedGoogle Scholar
  73. Wu N, Schmalz B, Fohrer N (2011) Distribution of phytoplankton in a German lowland river in relation to environmental factors. J Plankton Res 33:807–820. doi:10.1093/plankt/fbq139 CrossRefGoogle Scholar
  74. Zaccone R et al (2014) Seasonal dynamics of prokaryotic abundance and activities in relation to environmental parameters in a transitional aquatic ecosystem (Cape Peloro, Italy). Microb Ecol 67:45–56. doi:10.1007/s00248-013-0307-z CrossRefPubMedGoogle Scholar
  75. Zhaxybayeva O, Stepanauskas R, Ram-Mohan N, Papke RT (2013) Cell sorting analysis of geographically separated hypersaline environments. Extremophiles Life Under Extreme Conditions 17:265–275. doi:10.1007/s00792-013-0514-z CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Nikhil Ram-Mohan
    • 1
  • Aharon Oren
    • 2
  • R. Thane Papke
    • 1
  1. 1.Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUSA
  2. 2.Department of Plant and Environmental SciencesThe Alexander Silberman Institute of Life Sciences, The Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations