, Volume 20, Issue 5, pp 603–620 | Cite as

Diversity of extremophilic bacteria in the sediment of high-altitude lakes located in the mountain desert of Ojos del Salado volcano, Dry-Andes

  • Júlia Margit Aszalós
  • Gergely Krett
  • Dóra Anda
  • Károly Márialigeti
  • Balázs Nagy
  • Andrea K. Borsodi
Original Paper


Ojos del Salado, the highest volcano on Earth is surrounded by a special mountain desert with extreme aridity, great daily temperature range, intense solar radiation, and permafrost from 5000 meters above sea level. Several saline lakes and permafrost derived high-altitude lakes can be found in this area, often surrounded by fumaroles and hot springs. The aim of this study was to gain information about the bacterial communities inhabiting the sediment of high-altitude lakes of the Ojos del Salado region located between 3770 and 6500 m. Altogether 11 sediment samples from 4 different altitudes were examined with 16S rRNA gene based denaturing gradient gel electrophoresis and clone libraries. Members of 17 phyla or candidate divisions were detected with the dominance of Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes. The bacterial community composition was determined mainly by the altitude of the sampling sites; nevertheless, the extreme aridity and the active volcanism had a strong influence on it. Most of the sequences showed the highest relation to bacterial species or uncultured clones from similar extreme environments.


High-altitude lakes Dry-Andes Bacterial diversity 16S rRNA gene DGGE Clone library 


  1. Abdeljabbar H, Cayol JL, Hania WB, Boudabous A, Sadfi N, Fardeau ML (2013) Halanaerobium sehlinensesp. nov., an extremely halophilic, fermentative, strictly anaerobic bacterium from sediments of the hypersaline lake Sehline Sebkha. Int J Syst Evol Microbiol 63:2069–2074CrossRefPubMedGoogle Scholar
  2. Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Dtraile D, Van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aislabie JM, Broady PA, Saul DJ (2006) Culturable aerobic heterotrophic bacteria from high altitude, high latitude soil of La Gorce Mountains (86 30′S, 147 W), Antarctica. Antarct Sci 18:313–321CrossRefGoogle Scholar
  4. Aislabie JM, Lau A, Dsouza M, Shepherd C, Rhodes P, Turner SJ (2013) Bacterial composition of soils of the Lake Wellman area, Darwin Mountains, Antarctica. Extremophiles 17:775–786CrossRefPubMedGoogle Scholar
  5. Ammann C, Jenny B, Kammer K, Messerli B (2001) Late Quaternary glacier response to humidity changes in the arid Andes of Chile (18–29 S). Palaeogeogr Palaeoclimatol Palaeoecol 172:313–326CrossRefGoogle Scholar
  6. Antibus DE, Leff LG, Hall BL, Baeseman JL, Blackwood CB (2012) Cultivable bacteria from ancient algal mats from the McMurdo Dry Valleys, Antarctica. Extremophiles 16:105–114CrossRefPubMedGoogle Scholar
  7. Avguštin JA, Bertok DŽ, Avguštin G (2013) Isolation and characterization of a novel violacein-like pigment producing psychrotrophic bacterial species Janthinobacterium svalbardensis sp. nov. Antonie Van Leeuwenhoek 103:763–769CrossRefPubMedGoogle Scholar
  8. Azócar GF, Brenning A (2010) Hydrological and geomorphological significance of rock glaciers in the dry Andes, Chile (27–33 S). Permafr Periglac 21:42–53CrossRefGoogle Scholar
  9. Bajerski F, Ganzert L, Mangelsdorf K, Lipski A, Busse HJ, Padur L, Wagner D (2013) Herbaspirillum psychrotolerans sp. nov., a member of the family Oxalobacteraceae from a glacier forefield. Int J Syst Evol Microbiol 63:3197–3203CrossRefPubMedGoogle Scholar
  10. Boldareva EN, Bryantseva IA, Tsapin A, Nelson K, Sorokin DY, Tourova TP, Boichenko VA, Stadnichuk IN, Gorlenko VM (2007) The new alkaliphilic bacteriochlorophyll a-containing bacterium Roseinatronobacter monicus sp. nov. from the hypersaline Soda Mono Lake (California, United States). Microbiology 76:82–92CrossRefGoogle Scholar
  11. Borsodi AK, Knáb M, Krett G, Makk J, Márialigeti K, Erőss A, Mádl-Szőnyi J (2012) Biofilm bacterial communities inhabiting the cave walls of the Buda Thermal Karst System, Hungary. Geomicrobiol J 29:611–627CrossRefGoogle Scholar
  12. Bowman JP, Nichols DS (2005) Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia. Int J Syst Evol Microbiol 55:1471–1486CrossRefPubMedGoogle Scholar
  13. Cabrol NA, McKay CP, Grin EA, Kiss KT, Ács E, Tóth B, Grigorszky I, Szabó K, Fike DA, Hock AN, Demergasso C, Escudero L, Galleguillos P, Chong G, Grigsby BH,Román JZ, Tambley C (2007) Signatures of habitats and life in Earth’s high-altitude lakes: clues to Noachian aqueous environments on Mars. The Geology of Mars. Evidence from earth-based analogs, pp 349–370Google Scholar
  14. Cabrol NA, Grin EA, Chong G, Minkley E, Hock AN, Yu Y, Bebout L, Fleming E, Häder DP, Demergasso C, Gibson J, Escudero L, Dorador C, Lim D, Woosley C, Morris RL, Tambley C, Gaete V, Galvez ME, Smith E, Uskin-Peate I, Salazar C, Dawidowicz G, Majerowicz J (2009) The high‐lakes project. J Geophys Res-Biogeo 114(G2)Google Scholar
  15. Costello EK, Halloy SR, Reed SC, Sowell P, Schmidt SK (2009) Fumarole-supported islands of biodiversity within a hyperarid, high-elevation landscape on Socompa Volcano, Puna de Atacama, Andes. Appl Environ Microb 75:735–747CrossRefGoogle Scholar
  16. Cowan DA, Russell NJ, Mamais A, Sheppard DM (2002) Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6:431–436CrossRefPubMedGoogle Scholar
  17. Demergasso C, Escudero L, Casamayor EO, Chong G, Balagué V, Pedrós-Alió C (2008) Novelty and spatio–temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12:491–504CrossRefPubMedGoogle Scholar
  18. Demergasso C, Dorador C, Meneses D, Blamey J, Cabrol N, Escudero L, Chong G (2010) Prokaryotic diversity pattern in high‐altitude ecosystems of the Chilean Altiplano. J Geophys Res-Biogeo 115(G2)Google Scholar
  19. Dorador C, Busekow A, Vila I, Imhoff JF, Witzel KP (2008) Molecular analysis of enrichment cultures of ammonia oxidizers from the Salar de Huasco, a high altitude saline wetland in northern Chile. Extremophiles 12:405–414CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dorador C, Vila I, Witzel KP, Imhoff JF (2013) Bacterial and archaeal diversity in high altitude wetlands of the Chilean Altiplano. Fund Appl Limnol/Archiv für Hydrobiologie 182:135–159CrossRefGoogle Scholar
  21. Dunbar J, Barns SM, Ticknor LO, Kuske CR (2002) Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microb 68:3035–3045CrossRefGoogle Scholar
  22. Farías ME, Fernández‐Zenoff V, Flores R, Ordóñez O, Estévez C (2009) Impact of solar radiation on bacterioplankton in Laguna Vilama, a hypersaline Andean lake (4650 m). J Geophys Res-Biogeo 114(G2)Google Scholar
  23. Farías ME, Contreras M, Rasuk MC, Kurth D, Flores MR, Poire DG, Novoa F, Visscher PT (2014) Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile. Extremophiles 18:311–329CrossRefPubMedGoogle Scholar
  24. Finneran KT, Johnsen CV, Lovley DR (2003) Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Int J Syst Evol Microbiol 53:669–673CrossRefPubMedGoogle Scholar
  25. Fujimura R, Sato Y, Nishizawa T, Nanba K, Oshima K, Hattori M, Kamijo T, Ohta H (2012) Analysis of early bacterial communities on volcanic deposits on the island of Miyake (Miyake-jima), Japan: a 6-year study at a fixed site. Microbes Environ 27:19–29CrossRefPubMedGoogle Scholar
  26. García-Moyano A, González-Toril E, Aguilera Á, Amils R (2012) Comparative microbial ecology study of the sediments and the water column of the Rio Tinto, an extreme acidic environment. FEMS Microbiol Ecol 81:303–314CrossRefPubMedGoogle Scholar
  27. Goordial J, Davila A, Lacelle D, Pollard W, Marinova MM, Greer CW, DiRuggiero J, McKay CP, Whyte LG (2016) Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME J. doi: 10.1038/ismej.2015.239
  28. Halloy S (1991) Islands of life at 6000 m altitude: the environment of the highest autotrophic communities on Earth (Socompa Volcano, Andes). Arctic Alpine Res 247–262Google Scholar
  29. Hammer Ř, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4: 9Google Scholar
  30. Hiner EJ (2009) Technical report on the Laguna Verde Salar Project, 3rd region (43-101) Copiapo. Etna Resources Inc, ChileGoogle Scholar
  31. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B, Gallikowski CA (1998) Hymenobacter roseosalivarius gen. nov., sp. nov.from continental Antarctic soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 21:374–383CrossRefPubMedGoogle Scholar
  32. Hirsch P, Gallikowski CA, Siebert J, Peissl K, Kroppenstedt R, Schumann P, Stackebrandt E, Anderson R (2004) Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst Appl Microbiol 27:636–645CrossRefPubMedGoogle Scholar
  33. Houston J, Hartley AJ (2003) The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. Int J Climatol 23:1453–1464CrossRefGoogle Scholar
  34. Hultman J, Waldrop MP, Mackelprang R, David MM, McFarland J, Blazewicz SJ, Harden J, Turetsky MR, McGuire AD, Shah MB, VerBerkmoes NC, Lee LH, Mavrommatis K, Jansson JK (2015) Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521:208–212CrossRefPubMedGoogle Scholar
  35. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefPubMedGoogle Scholar
  36. Kim YS, Kim SJ, Anandham R, Weon HY, Kwon SW (2013) Rhodanobacter umsongensis sp. nov., isolated from a Korean ginseng field. J Microbiol 51:258–261CrossRefPubMedGoogle Scholar
  37. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  38. Krett G, Vágány V, Makk J, Jáger K, Reskóné MN, Márialigeti K, Borsodi A (2013) Phylogenetic diversity of bacterial communities inhabiting the sediment of Lake Hévíz—a comparison of cultivation and cloning. Acta Microbiol Imm H 60:211–235CrossRefGoogle Scholar
  39. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds): Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175Google Scholar
  40. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Bioinformatics 23:2947–2948. doi: 10.1093/bioinformatics/btm404 CrossRefPubMedGoogle Scholar
  41. Li AH, Liu HC, Xin YH, Kim SG, Zhou YG (2014) Glaciihabitans tibetensis gen. nov., sp. nov., a psychrotolerant bacterium of the family Microbacteriaceae, isolated from glacier ice water. Int J Syst Evol Microbiol 64:579–587CrossRefPubMedGoogle Scholar
  42. Liu Y, Yao T, Jiao N, Kang S, Zeng Y, Huang S (2006) Microbial community structure in moraine lakes and glacial meltwaters, Mount Everest. FEMS Microbiol Lett 265:98–105CrossRefPubMedGoogle Scholar
  43. Liu Y, Yao T, Jiao N, Kang S, Huang S, Li Q, Wang K, Liu X (2009) Culturable bacteria in glacial meltwater at 6350 m on the East Rongbuk Glacier, Mount Everest. Extremophiles 13:89–99CrossRefPubMedGoogle Scholar
  44. Loveland-Curtze J, Miteva VI, Brenchley JE (2009) Herminiimonas glaciei sp. nov., a novel ultramicrobacterium from 3042 m deep Greenland glacial ice. Int J Syst Evol Microbiol 59:1272–1277CrossRefPubMedGoogle Scholar
  45. Lynch RC, King AJ, Farías ME, Sowell P, Vitry C, Schmidt SK (2012) The potential for microbial life in the highest‐elevation (>6000 m.a.s.l.) mineral soils of the Atacama region. J Geophys Res Biogeo 117(G2)Google Scholar
  46. Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, Rubin EM, Jansson JK (2011) Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480:368–371CrossRefPubMedGoogle Scholar
  47. Madigan MT, Jung DO, Woese CR, Achenbach LA (2000) Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat. Arch Microbiol 173:269–277CrossRefPubMedGoogle Scholar
  48. Männistö MK, Rawat S, Starovoytov V, Häggblom MM (2012) Granulicella arctica sp. nov., Granulicella mallensis sp. nov., Granulicella tundricola sp. nov. and Granulicella sapmiensis sp. nov., novel acidobacteria from tundra soil. Int J Syst Evol Microbiol 62:2097–2106CrossRefPubMedGoogle Scholar
  49. Männistö MK, Tiirola M, McConnell J, Häggblom MM (2010) Mucilaginibacter frigoritolerans sp. nov., Mucilaginibacter lappiensis sp. nov. and Mucilaginibacter mallensis sp. nov., isolated from soil and lichen samples. Int J Syst Evol Microbiol 60:2849–2856CrossRefPubMedGoogle Scholar
  50. Margesin R, Spröer C, Zhang DC, Busse HJ (2012) Polaromonas glacialis sp. nov. and Polaromonas cryoconiti sp. nov., isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 62:2662–2668CrossRefPubMedGoogle Scholar
  51. Massol-Deya AA, Odelson DA, Hickey RF, Tiedje JM (1995) Bacterial community fingerprinting of amplified 16S and 16–23S ribosomal DNA gene sequences and restriction endonuclease analysis (ARDRA). In: Molecular microbial ecology manual. Springer, The Netherlands, pp 289–296Google Scholar
  52. Messing J (1983) New M13 vectors for cloning. Method Enzymol 101:20–78CrossRefGoogle Scholar
  53. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microb 59:695–700Google Scholar
  54. Nagy B, Mari L, Kovács J, Nemerkényi Zs, Heiling Zs, (2014/a) Környezetváltozás a Száraz-Andokban: az Ojos del Salado monitoring vizsgálata (In Hungarian).In: Cserny T, Kovács-Pálffy P, Krivánné Horváth Á (szerk.) HUNGEO 2014 Magyar Földtudományi szakemberek XII. találkozója: Magyar felfedezők és kutatók a természeti erőforrások hasznosításáért: cikkgyűjtemény. Budapest: Magyarhoni Földtani Társulat, pp 53–62 (ISBN:978-963-8221-53-7)Google Scholar
  55. Nagy B, Mari L, Kovács J, Nemerkényi Zs, Heiling Zs (2014b) Az Ojos del Salado monitoring vizsgálata: jég- és vízjelenlét a Föld legszárazabb magashegységében (In Hungarian).In: Sansumné Molnár J, Siskáné Szilasi B, Dobos E (szerk) VII. Magyar Földrajzi Konferencia kiadványa, Miskolc, pp 449–459. (ISBN: 978-963-358-063-9)Google Scholar
  56. Nakagawa Y, Sakane T, Suzuki M, Hatano K (2002) Phylogenetic structure of the genera Flexibacter, Flexithrix, and Microscilla deduced from 16S rRNA sequence analysis. J Gen Appl Microbiol 48:155–165CrossRefPubMedGoogle Scholar
  57. Nakai R, Abe T, Baba T, Imura S, Kagoshima H, Kanda H, Kanekiyo A, Kohara Y, Koi A, Nakamura K, Narita T, Niki H, Yanagihara K, Naganuma T (2012) Microflorae of aquatic moss pillars in a freshwater lake, East Antarctica, based on fatty acid and 16S rRNA gene analyses. Polar Biol 35:425–433CrossRefGoogle Scholar
  58. Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643PubMedPubMedCentralGoogle Scholar
  59. Ordoñez OF, Flores MR, Dib JR, Paz A, Farías ME (2009) Extremophile culture collection from Andean lakes: extreme pristine environments that host a wide diversity of microorganisms with tolerance to UV radiation. Microb Ecol 58:461–473CrossRefPubMedGoogle Scholar
  60. Peeters K, Ertz D, Willems A (2011) Culturable bacterial diversity at the Princess Elisabeth Station (Utsteinen, Sør Rondane Mountains, East Antarctica) harbours many new taxa. Syst Appl Microbiol 34:360–367CrossRefPubMedGoogle Scholar
  61. Ruckmani A, Kaur I, Schumann P, Klenk HP, Mayilraj S (2011) Calidifontibacter indicus gen. nov., sp. nov., a member of the family Dermacoccaceae isolated from a hot spring, and emended description of the family Dermacoccaceae. Int J Syst Evol Microbiol 61:2419–2424CrossRefPubMedGoogle Scholar
  62. Sattin SR, Cleveland CC, Hood E, Reed SC, King AJ, Schmidt SK, Robeson MS, Ascarrunz N, Nemergut DR (2009) Functional shifts in unvegetated, perhumid, recently-deglaciated soils do not correlate with shifts in soil bacterial community composition. J Microbiol 47:673–681CrossRefPubMedGoogle Scholar
  63. Schumann P, Zhang DC, Redzic M, Margesin R (2012) Alpinimonas psychrophila gen. nov., sp. nov., an actinobacterium of the family Microbacteriaceae isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 62:2724–2730CrossRefPubMedGoogle Scholar
  64. Scott S, Dorador C, Oyanedel JP, Tobar I, Hengst M, Maya G, Harrod C, Vila I (2015) Microbial diversity and trophic components of two high altitude wetlands of the Chilean Altiplano/Diversidad microbiana y componentes trófi cos de dos humedales de altura del altiplano chileno. Gayana 79:45Google Scholar
  65. Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, Becker R, Neuber G, Kropf S, Ulrich A, Tebbe CC (2007) Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results? J Microbiol Methods 69:470–479CrossRefPubMedGoogle Scholar
  66. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849CrossRefGoogle Scholar
  67. Subcommittee Permafrost (1988) Glossary of permafrost and related ground-ice terms. Associate Committee on Geotechnical Research, National Research Council of Canada, Ottawa, p 156Google Scholar
  68. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  69. Taş N, Prestat E, McFarland JW, Wickland KP, Knight R, Berhe AA, Jorgeson T, Waldrop MP, Jansson JK (2014) Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J 8:1904–1919CrossRefPubMedPubMedCentralGoogle Scholar
  70. Tindall BJ, Rosselló-Mora R, Busse HJ, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266CrossRefPubMedGoogle Scholar
  71. Van Trappen S, Vandecandelaere I, Mergaert J, Swings J (2005) Flavobacterium fryxellicola sp. nov. and Flavobacterium psychrolimnae sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 55:769–772CrossRefPubMedGoogle Scholar
  72. Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438PubMedPubMedCentralGoogle Scholar
  73. Vuille M, Ammann C (1997) Regional snowfall patterns in the high, arid Andes. Clim Chang 36:413–423CrossRefGoogle Scholar
  74. Watson SW, Bock E, Valois FW, Waterbury JB, Schlosser U (1986) Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch Microbiol 144:1–7CrossRefGoogle Scholar
  75. Wu QL, Zwart G, Schauer M, Kamst-van Agterveld MP, Hahn MW (2006) Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Appl Environ Microbiol 72:5478–5485CrossRefPubMedPubMedCentralGoogle Scholar
  76. Xing P, Hahn MW, Wu QL (2009) Low taxon richness of bacterioplankton in high-altitude lakes of the eastern Tibetan Plateau, with a predominance of Bacteroidetes and Synechococcus spp. Appl Environ Microbiol 75:7017–7025CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zhang DC, Wang HX, Liu HC, Dong XZ, Zhou PJ (2006) Flavobacterium glaciei sp. nov., a novel psychrophilic bacterium isolated from the China no. 1 glacier. Int J Syst Evol Microbiol 56:2921–2925CrossRefPubMedGoogle Scholar
  78. Zhang G, Ma X, Niu F, Dong M, Feng H, An L, Cheng G (2007) Diversity and distribution of alkaliphilic psychrotolerant bacteria in the Qinghai-Tibet Plateau permafrost region. Extremophiles 11:415–424CrossRefPubMedGoogle Scholar
  79. Zhang DC, Schumann P, Redzic M, Zhou YG, Liu HC, Schinner F, Margesin R (2012) Nocardioides alpinus sp. nov., a psychrophilic actinomycete isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 62:445–450CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Júlia Margit Aszalós
    • 1
  • Gergely Krett
    • 1
  • Dóra Anda
    • 1
  • Károly Márialigeti
    • 1
  • Balázs Nagy
    • 2
  • Andrea K. Borsodi
    • 1
  1. 1.Department of MicrobiologyEötvös Loránd UniversityBudapestHungary
  2. 2.Department of Physical GeographyEötvös Loránd UniversityBudapestHungary

Personalised recommendations