, Volume 20, Issue 4, pp 525–536 | Cite as

Analysis of the metatranscriptome of microbial communities of an alkaline hot sulfur spring revealed different gene encoding pathway enzymes associated with energy metabolism

  • Swetaleena Tripathy
  • Soumesh Kumar Padhi
  • Sriprakash Mohanty
  • Mrinal Samanta
  • Nikhil Kumar MaitiEmail author
Original Paper


Alkaline sulfur hot springs notable for their specialized and complex ecosystem powered by geothermal energy are abundantly rich in different chemotrophic and phototrophic thermophilic microorganisms. Survival and adaptation of these organisms in the extreme environment is specifically related to energy metabolism. To gain a better understanding of survival mechanism of the organisms in these ecosystems, we determined the different gene encoding enzymes associated with anaerobic pathways of energy metabolism by applying the metatranscriptomics approach. The analysis of the microbial population of hot sulfur spring revealed the presence of both aerobic and anaerobic organisms indicating dual mode of lifestyle of the community members. Proteobacteria (28.1 %) was the most dominant community. A total of 988 reads were associated with energy metabolism, out of which 33.7 % of the reads were assigned to nitrogen, sulfur, and methane metabolism based on KEGG classification. The major lineages of hot spring communities were linked with the anaerobic pathways. Different gene encoding enzymes (hao, nir, nar, cysH, cysI, acs) showed the involvement of microbial members in nitrification, denitrification, dissimilatory sulfate reduction, and methane generation. This study enhances our understanding of important gene encoding enzymes involved in energy metabolism, required for the survival and adaptation of microbial communities in the hot spring.


Hot spring Microbial communities Functional pathways Energy metabolism 



Messenger ribonucleic acid


Complementary DNA


Next-generation sequencing


Metagenomics-Rapid Annotation using Subsystem Technology


MEtaGenome ANalyzer



This work was supported by a Grant from National Agriculture Innovation Project, Indian Council of Agricultural Research (NAIP/Comp-4/C30033/2008-09;04.05.2009).

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

792_2016_846_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)
792_2016_846_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 15 kb)
792_2016_846_MOESM3_ESM.docx (17 kb)
Supplementary material 3 (DOCX 16 kb)


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  2. Beatty JT, Overmann J, Lince MT, Manske AK, Lang AS, Blankenship RE, Van Dover CL, Martinson TA, Plumley FG (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc Natl Acad Sci USA 102(26):9306–9310CrossRefPubMedPubMedCentralGoogle Scholar
  3. Braker G, Tiedje JM (2003) Nitric oxide reductase (norB) Genes from pure cultures and environmental samples. Appl Environ Microbiol 69(6):3476–3483CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chan CS, Chan KG, Tay YL, Chua YS, Goh KM (2015) Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing. Front Microbiol 6:177PubMedPubMedCentralGoogle Scholar
  5. Elshahed MS, Senko JM, Najar FZ, Kenton SM, Roe BA, Dewers TA, Spear JR, Krumholz LR (2003) Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl Environ Microbiol 69(9):5609–5621CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ferry JG (1990) Formate dehydrogenase. FEMS Microbiol Rev 7(3–4):377–382CrossRefPubMedGoogle Scholar
  7. Gilbert JA, Hughes M (2011) Gene expression profiling: metatranscriptomics. Methods Mol Biol 733:195–205CrossRefPubMedGoogle Scholar
  8. Gilbert JA, Field D, Huang Y, Edwards R, Li W et al (2008) Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS One 3(8):e3042CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hanada S, Takaichi S, Matsuura K, Nakamura K (2002) Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium which lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193CrossRefPubMedGoogle Scholar
  10. Huson DH, Mitra S, Ruscheweyh HJ, Weber N, Schuster SC (2011) Integrative analysis of environmental sequences using MEGAN4. Genome Res 21:1552–1560CrossRefPubMedPubMedCentralGoogle Scholar
  11. Inskeep WP, Rusch DB, Jay ZJ, Herrgard MJ, Kozubal MA, Richardson TH, Macur RE, Hamamura N, Jennings R, Fouke BW, Reysenbach AL, Roberto F, Young M, Schwartz A, Boyd ES, Badger JH, Mathur EJ, Ortmann AC, Bateson M, Geesey G, Frazier M (2010) Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS One 5(3):e9773. doi: 10.1371/journal.pone.0009773 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Inskeep WP, Jay ZJ, Tringe SG, Herrgard MJ, Rusch DB (2013) The YNP metagenome project: environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem. Front Microbiol 4(67):1–15Google Scholar
  13. Jimenez DJ, Andreote FD, Chaves D, Montana JS, Osorio-Forero C, Junca H, Zambrano MM, Baena S (2012) Structural and functional insights from the metagenome of an acidic hot spring microbial planktonic community in the Colombian Andes. PLoS One 7:e52069CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kopylova E, Noe L, Touzet H (2012) SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28:3211–3217CrossRefPubMedGoogle Scholar
  16. Krohn-Molt I, Wemheuer B, Alawi M, Poehlein A, Güllert S, Schmeisser C, Pommerening-Roser A, Grundhoff A, Daniel R, Hanelt D, Streita WR (2013) Metagenome survey of a multispecies and alga-associated biofilm revealed key elements of bacterial-algal interactions in photobioreactors. Appl Environ Microbiol 79(20):6196–6206CrossRefPubMedPubMedCentralGoogle Scholar
  17. Leimena MM, Ramiro-Garcia J, Davids M, Bogert B, Smidt H, Smid EJ, Boekhorst J, Zoetendal EG, Schaap PJ, Kleerebezem M (2013) A comprehensive metatranscriptome analysis pipeline and its validation using human small intestine microbiota datasets. BMC Genom 14:530CrossRefGoogle Scholar
  18. Liu Z, Klatt CG, Wood JM, Rusch DB, Ludwig M, Wittekindt N, Tomsho LP, Schuster SC, Ward DM, Bryant DA (2011) Metatranscriptomic analyses of chlorophototrophs of a hot-spring microbial mat. ISME J 5:1279–1290CrossRefPubMedPubMedCentralGoogle Scholar
  19. Mahala SC, Singh P, Das M, Acharya S (2012) Genesis of thermal springs of Odisha. India J Earth Sc Eng 5(6):1572–1577Google Scholar
  20. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386CrossRefGoogle Scholar
  21. Miller SR, Strong AL, Jones KL, Ungerer MC (2009) Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Appl Environ Microbiol 75(13):4565–4572CrossRefPubMedPubMedCentralGoogle Scholar
  22. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, Crecy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch GD, Rodionov DA, Ruckert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O, Vonstein V (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33(17):5691–5702CrossRefPubMedPubMedCentralGoogle Scholar
  23. Pandey S, Sree A, Dash SS, Sethi DP, Chowdhury L (2013) Diversity of marine bacteria producing beta-glucosidase inhibitors. Microb Cell Fact 12:35CrossRefPubMedPubMedCentralGoogle Scholar
  24. Parro V, Moreno-Paz M, Gonzalez-Toril E (2007) Analysis of environmental transcriptomes by DNA microarrays. Environ Microbiol 9:453–464CrossRefPubMedGoogle Scholar
  25. Poretsky RS, Bano N, Buchan A, LeCleir G, Kleikemper J, Pickering M, Pate WM, Moran MA, Hollibaugh JT (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71:4121–4126CrossRefPubMedPubMedCentralGoogle Scholar
  26. Schoenfeld T, Patterson M, Richardson PM, Wommack KE, Young M, Mead D (2008) Assembly of viral metagenomes from yellowstone hot springs. Appl Environ Microbiol 74:4164–4174CrossRefPubMedPubMedCentralGoogle Scholar
  27. Skirnisdottir S, Hreggvidsson GO, Hjorleifsdottir S, Marteinsson VT, Petursdottir SK, Holst O, Kristjansson JK (2000) Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66(7):2835–2841CrossRefPubMedPubMedCentralGoogle Scholar
  28. Stout LM, Blake RE, Greenwood JP, Martini AM, Rose EC (2009) Microbial diversity of boron-rich volcanic hot springs of St. Lucia, Lesser Antilles. FEMS Microbiol Ecol 70:402–412CrossRefPubMedGoogle Scholar
  29. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2001) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28(1):33–36CrossRefGoogle Scholar
  30. Urich T, Lanzen A, Qi J, Huson DH, Schleper C et al (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One 3:e2527CrossRefPubMedPubMedCentralGoogle Scholar
  31. van der Meer MTJ, Klatt CG, Wood J, Bryant DA, Bateson MM, Lammerts L, Schouten S, Sinninghe Damste JS, Madigan MT, Ward DM (2010) Cultivation and genomic, nutritional, and lipid biomarker characterization of Roseiflexus strains closely related to predominant in situ populations inhabiting Yellowstone hot spring microbial mats. J Bacteriol 192:3033–3042CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ward DM, Klatt CG, Wood J, Cohan FM, Bryant DA (2012) Functional genomics in an ecological and evolutionary context: maximizing the value of genomes in systems biology. In: Burnap RL, Vermaas W (eds) Functional genomics and evolution of photosynthetic systems, vol 33. Springer, Dordrecht, pp 1–16CrossRefGoogle Scholar
  33. Wemheuer B, Taube R, Akyol P, Wemheuer F, Daniel R (2013) Microbial diversity and biochemical potential encoded by thermal spring metagenomes derived from the Kamchatka Peninsula. Archaea 136714:1–13CrossRefGoogle Scholar
  34. Yamamoto M, Takai K (2011) Sulfur metabolisms in epsilon- and gamma-Proteobacteria in deep sea hydrothermal fields. Front Microbiol 2(192):1–8Google Scholar
  35. Zarzycki J, Fuchs G (2011) Coassimilation of organic substrates via the autotrophic 3 hydroxypropionate bi-cycle in Chloroflexus aurantiacus. Appl Environ Microbiol 77:6181–6188CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Swetaleena Tripathy
    • 1
  • Soumesh Kumar Padhi
    • 1
  • Sriprakash Mohanty
    • 1
  • Mrinal Samanta
    • 1
  • Nikhil Kumar Maiti
    • 1
    Email author
  1. 1.Environmental Microbiology Unit, Division of Fish Health ManagementCentral Institute of Freshwater AquacultureBhubaneswarIndia

Personalised recommendations