, Volume 20, Issue 5, pp 579–588 | Cite as

Growth of high-elevation Cryptococcus sp. during extreme freeze–thaw cycles

  • L. Vimercati
  • S. Hamsher
  • Z. Schubert
  • S. K. SchmidtEmail author
Original Paper


Soils above 6000 m.a.s.l. are among the most extreme environments on Earth, especially on high, dry volcanoes where soil temperatures cycle between −10 and 30 °C on a typical summer day. Previous studies have shown that such sites are dominated by yeast in the cryophilic Cryptococcus group, but it is unclear if they can actually grow (or are just surviving) under extreme freeze–thaw conditions. We carried out a series of experiments to determine if Cryptococcus could grow during freeze–thaw cycles similar to those measured under field conditions. We found that Cryptococcus phylotypes increased in relative abundance in soils subjected to 48 days of freeze–thaw cycles, becoming the dominant organisms in the soil. In addition, pure cultures of Cryptococcus isolated from these same soils were able to grow in liquid cultures subjected to daily freeze–thaw cycles, despite the fact that the culture medium froze solid every night. Furthermore, we showed that this organism is metabolically versatile and phylogenetically almost identical to strains from Antarctic Dry Valley soils. Taken together these results indicate that this organism has unique metabolic and temperature adaptations that make it able to thrive in one of the harshest and climatically volatile places on Earth.


Freeze–thaw cycles Llullaillaco Psychrophilic yeast Astrobiology Dry limits to life 



We thank J. L. Darcy and E. Gendron for assistance in the lab and P. Sowell for collecting the soils used in this study. Funding was provided by NSF Grant DEB-1258160 and a Grant from the USAF Office of Scientific Research (FA9550-14-1-0006).


  1. Bang W, Drake MA (2002) Resistance of cold-and starvation-stressed Vibrio vulnificus to heat and freeze–thaw exposure. J Food Protect 65:975–980Google Scholar
  2. Benham RW (1956) The genus Cryptococcus. Bacteriol Rev 20:189–199PubMedPubMedCentralGoogle Scholar
  3. Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241CrossRefPubMedGoogle Scholar
  4. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010a) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–277CrossRefPubMedGoogle Scholar
  5. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010b) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8:129–138. doi: 10.1038/nrmicro2281 CrossRefPubMedGoogle Scholar
  7. Costello EK, Halloy SRP, Reed SC, Sowell P, Schmidt SK (2009) Fumarole-supported islands of biodiversity within a hyperarid, high-elevation landscape on Socompa Volcano, Puna de Atacama, Andes. Appl Environ Microbiol 75:735–747CrossRefPubMedGoogle Scholar
  8. Darcy JL, Schmidt SK (2016) Nutrient limitation of microbial phototrophs on a debris-covered glacier. Soil Biol Biochem 95:156–163CrossRefGoogle Scholar
  9. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R (2011) Geneious, version 5.4. Geneious, Auckland, New Zealand. Accessed 15 Sep 2015
  10. Dubernet S, Panoff JM, Thammavongs B, Guéguen M (2002) Nystatin and osmotica as chemical enhancers of the phenotypic adaptation to freeze–thaw stress in Geotrichum candidum ATCC 204307. Int J Food Microbiol 76:215–221CrossRefPubMedGoogle Scholar
  11. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gadd GM, Chalmers K, Reed RH (1987) The role of trehalose in dehydration resistance of Saccharomyces cerevisiae. FEMS Microbiol Lett 48:249–254CrossRefGoogle Scholar
  13. Goto S, Sugiyama J (1970) Studies on Himalayan yeasts and molds (IV). Several asporogenous yeasts, including two new taxa of Cryptococcus. Can J Bot 48:2097–2101CrossRefGoogle Scholar
  14. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224. doi: 10.1093/molbev/msp259 CrossRefPubMedGoogle Scholar
  15. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi: 10.1093/sysbio/syq010 CrossRefPubMedGoogle Scholar
  16. Halloy S (1991) Islands of life at 6000 m altitude: the environment of the highest autotrophic communities on Earth (Socompa Volcano, Andes). Arctic Alpine Res 23:247–262CrossRefGoogle Scholar
  17. Henry HA (2007) Soil freeze–thaw cycle experiments: trends, methodological weaknesses and suggested improvements. Soil Biol Biochem 39:977–986CrossRefGoogle Scholar
  18. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  19. Leenanon B, Drake MA (2001) Acid stress, starvation, and cold stress affect poststress behavior of Escherichia coli O157: H7 and nonpathogenic Escherichia coli. J Food Protect 64:970–974Google Scholar
  20. Lipson DA, Schmidt SK, Monson RK (2000) Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass. Soil Biol Biochem 32:441–448CrossRefGoogle Scholar
  21. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lynch RC, King AJ, Farías ME, Sowell P, Vitry C, Schmidt SK (2012) The potential for microbial life in the highest elevation (>6000 m.a.s.l.) mineral soils of the Atacama region. J Geophys Res 117:G02028Google Scholar
  23. Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167PubMedPubMedCentralGoogle Scholar
  24. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MH, Wagner H (2013) Vegan: Community Ecology Package. R Package version 2.0-10. Accessed 16 Sep 2015
  25. Park JI, Grant CM, Attfield PV, Dawes IW (1997) The freeze–thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway. Appl Environ Microbiol 63:3818–3824PubMedPubMedCentralGoogle Scholar
  26. Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650. doi: 10.1093/molbev/msp077 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Reinhard J (1999) Frozen in time. Natl Geogr 196:36–55Google Scholar
  28. Reinhard J, Ceruti MC (2010) Inca rituals and sacred mountains: a study of the world’s highest archaeological sites. UCLA Cotsen Institute of Archaeology Press, Los AngelesGoogle Scholar
  29. Rhodes M, Knelman J, Lynch R, Darcy JL, Nemergut DR, Schmidt SK (2013) Alpine and arctic soil microbial communities. The prokaryotes. Springer, Berlin, pp 43–55. doi: 10.1007/978-3-642-30123-0_37 Google Scholar
  30. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  31. Schmidt D (1999) Das Extremklima Der Nordchilenischen Hochatacama Unter Besonderer Berücksichtigung Der Höhengradienten. Dresdener Geographische Beiträge 4:1–122Google Scholar
  32. Schmidt SK, Wilson KL, Meyer AF, Gebauer MM, King AJ (2008) Phylogeny and ecophysiology of opportunistic “snow molds” from a subalpine forest ecosystem. Microb Ecol 56:681–687CrossRefPubMedGoogle Scholar
  33. Schmidt SK, Nemergut DR, Miller AE, Freeman KR, King AJ, Seimon A (2009) Microbial activity and diversity during extreme freeze–thaw cycles in periglacial soils, 5400 m elevation, Cordillera Vilcanota, Perú. Extremophiles 13:807–816. doi: 10.1007/s00792-009-0268-9 CrossRefPubMedGoogle Scholar
  34. Schmidt SK, Naff C, Lynch R (2012) Fungal communities at the edge: ecological lessons from high alpine fungi. Fungal Ecol 5:443–452. doi: 10.1016/j.funeco.2011.10.005 CrossRefGoogle Scholar
  35. Schoolfield RM, Sharpe PJ, Magnuson CE (1981) Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J Theor Biol 88:719–731. doi: 10.1016/0022-5193(81)90246-0 CrossRefPubMedGoogle Scholar
  36. Schubert ZR (2014) Dew formation and water availability at high elevation in the Atacama Desert, Chile. Undergraduate Honors Thesis. Paper 192. University of Colorado, BoulderGoogle Scholar
  37. Skogland T, Lomeland S, Goksøyr J (1988) Respiratory burst after freezing and thawing of soil: experiments with soil bacteria. Soil Biol Biochem 20:851–856. doi: 10.1016/0038-0717(88)90092-2 CrossRefGoogle Scholar
  38. Swan LW (1992) The Aeolian biome. Bioscience 42:262–270. doi: 10.2307/1311674 CrossRefGoogle Scholar
  39. Vishniac HS (1985) Cryptococcus friedmannii, a new species of yeast from the Antarctic. Mycologia 77:149–153. doi: 10.2307/3793260 CrossRefPubMedGoogle Scholar
  40. Vishniac HS, Hempfling WP (1979a) Cryptococcus vishniacii sp. nov., an Antarctic yeast. Int J Syst Bacteriol 29:153–158. doi: 10.1099/00207713-29-2-153 CrossRefGoogle Scholar
  41. Vishniac HS, Hempfling WP (1979b) Evidence of an indigenous microbiota (yeast) in the Dry Valleys of Antarctica. J Gen Microbiol 112:301–314CrossRefGoogle Scholar
  42. Welsh DT, Herbert RA (1999) Osmotically induced intracellular trehalose, but not glycine or betaine accumulation promotes desiccation tolerance in Escherichia coli. FEMS Microbiol Lett 174:57–63CrossRefPubMedGoogle Scholar
  43. Wilson AS, Brown EL, Villa C, Lynnerup N, Healey A, Ceruti MC, Reinhard J, Previgliano CH, Araoz FA, Gonzalez Diez J, Taylor T (2013) Archaeological, radiological, and biological evidence offer insight into Inca child sacrifice. PNAS 110:13322–13327. doi: 10.1073/pnas.1305117110 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Yergeau E, Kowalchuk GA (2008) Responses of Antarctic soil microbial communities and associated functions to temperature and freeze–thaw cycle frequency. Environ Microbiol 10:2223–2235. doi: 10.1111/j.1462-2920.2008.01644.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • L. Vimercati
    • 1
  • S. Hamsher
    • 1
  • Z. Schubert
    • 1
  • S. K. Schmidt
    • 1
    Email author
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations