Skip to main content
Log in

Oil removal and effects of spilled oil on active microbial communities in close to salt-saturation brines

  • Review
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Abiotic and biotic processes associated with the degradation of a light petroleum in brines close to the salt-saturation (~31 %) and the effect of labile organic matter (LOM) supply (casaminoacids/citrate; 0.2 and 0.1 % w/v, respectively) were followed during an incubation of 30 days. After 4-week incubation at 40 °C under light/dark cycles, a 24 % of abiotic degradation was observed in untreated brines. The stimulation of native brines community with LOM addition allowed an additional 12.8 % oil attenuation due to biodegradation processes. Successional changes in the active microbial community structure due to the oil contamination (16S rRNA DGGE approach) showed the selection of one phylotype affiliated to Salinibacter and the disappearance of Haloquadratum walsbyi in untreated brines. In LOM-amended microcosms, phylotypes related to Salinibacter, Haloarcula, Haloterrigena and Halorhabdus were selected. An effect of hydrocarbon contamination was only observed in the bacterial community with the inhibition of two dominant proteobacterial phylotypes. This study further confirms that short-term and moderate oil biodegradation is possible in LOM-stimulated brines. Biodegradation should be much more reduced under in situ conditions. Self-cleaning capacities of close to saturation hypersaline lakes appears, therefore very limited compared to non-extreme haline environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Mailem DM, Sorkhoh NA, Al-Awadhi H et al (2010) Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14:321–328

    Article  CAS  PubMed  Google Scholar 

  • Al-Mailem DM, Eliyas M, Radwan SS (2012) Enhanced haloarchaeal oil removal in hypersaline environments via organic nitrogen fertilization and illumination. Extremophiles 16:751–758

    Article  CAS  PubMed  Google Scholar 

  • Al-Mailem DM, Eliyas M, Radwan SS (2013a) Bioremediation of oily hypersaline soil and water via potassium and magnesium amendment. Can J Microbiol 59:837–844

    Article  CAS  PubMed  Google Scholar 

  • Al-Mailem DM, Eliyas M, Radwan SS (2013b) Oil-bioremediation potential of two hydrocarbonoclastic, diazotrophic Marinobacter strains from hypersaline areas along the Arabian Gulf coasts. Extremophiles 17:463–470

    Article  CAS  PubMed  Google Scholar 

  • Al-Mailem D, Eliyas M, Khanafer M, Radwan S (2014a) Culture-dependent and culture-independent analysis of hydrocarbonoclastic microorganisms indigenous to hypersaline environments in Kuwait. Microb Ecol 67:857–865

    Article  PubMed  Google Scholar 

  • Al-Mailem DM, Eliyas M, Radwan S (2014b) Enhanced bioremediation of oil-polluted, hypersaline, coastal areas in Kuwait via vitamin-fertilization. Environ Sci Pollut Res 21:3386–3394

    Article  CAS  Google Scholar 

  • Alonso-Gutiérrez J, Figueras A, Albaigés J et al (2009) Bacterial communities from shoreline environments (Costa da Morte, Northwestern Spain) affected by the Prestige oil spill. Appl Environ Microbiol 75:3407–3418

    Article  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Antón J, Oren A, Benlloch S, et al. (2002) Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491

    Article  PubMed  Google Scholar 

  • Atlas RM (1975) Effects of temperature and crude oil composition on petroleum biodegradation. Appl Microbiol 30:396–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand JC, Almallah M, Acquaviva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett Appl Microbiol 11:260–263

    Article  CAS  Google Scholar 

  • Bingeman CW, Varner JE, Martin WP (1953) The effect of the addition of organic materials on the decomposition of an organic soil. Soil Sci Soc Am J 17:34. doi:10.2136/sssaj1953.03615995001700010008x

    Article  CAS  Google Scholar 

  • Blanck H, Dahl B (1998) Recovery of marine periphyton communities around a Swedish marina after the ban of TBT use in antifouling paint. Mar Pollut Bull 36:437–442

    Article  CAS  Google Scholar 

  • Bonfa MR, Grossman MJ, Mellado E, Durrant LR (2011) Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere 84:1671–1676

    Article  CAS  PubMed  Google Scholar 

  • Burns DG, Janssen PH, Itoh T, et al. (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392

    Article  CAS  PubMed  Google Scholar 

  • Casamayor EO, Calderón-Paz JI, Pedrós-Alió C (2000) 5S rRNA fingerprints of marine bacteria, halophilic archaea and natural prokaryotic assemblages along a salinity gradient. FEMS Microbiol Ecol 34:113–119

    Article  CAS  PubMed  Google Scholar 

  • Delille D, Delille B, Pelletier E (2002) Effectiveness of bioremediation of crude oil contaminated subantarctic intertidal sediment: the microbial response. Microb Ecol 44:118–126

    Article  CAS  PubMed  Google Scholar 

  • Djeridi I, Militon C, Grossi V, Cuny P (2013) Evidence for surfactant production by the haloarchaeon Haloferax sp. MSNC14 in hydrocarbon-containing media. Extremophiles 17:669–675

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol. doi:10.3389/fmicb.2014.00173

    PubMed  PubMed Central  Google Scholar 

  • Gertler C, Yakimov MM, Malpass MC, Golyshin PN (2010) Shipping-related accidental and deliberate release into the environment. In: Handbook of Hydrocarbon and Lipid Microbiology. Springer, pp 243–256

  • Ghai R, Pašić L, Fernández AB, et al. (2011) New Abundant Microbial Groups in Aquatic Hypersaline Environments. Sci Rep. doi:10.1038/srep00135

    PubMed  PubMed Central  Google Scholar 

  • Gomariz M, Martínez-García M, Santos F, et al. (2015) From community approaches to single-cell genomics: the discovery of ubiquitous hyperhalophilic Bacteroidetes generalists. ISME J 9:16–31. doi:10.1038/ismej.2014.95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossi V, Cravo-Laureau C, Guyoneaud R, et al. (2008) Metabolism of n-alkanes and n-alkenes by anaerobic bacteria: A summary. Org Geochem 39:1197–1203. doi: 10.1016/j.orggeochem.2008.02.010

    Article  CAS  Google Scholar 

  • Hamme JDV, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549. doi:10.1128/MMBR.67.4.503-549.2003

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9

    Google Scholar 

  • Hart DJ, Vreeland RH (1988) Changes in the hydrophobic-hydrophilic cell surface character of Halomonas elongata in response to NaCl. J Bacteriol 170:132–135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Head IM, Jones DM, Röling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  CAS  PubMed  Google Scholar 

  • Hylland K (2006) Polycyclic Aromatic Hydrocarbon (PAH) Ecotoxicology in Marine Ecosystems. J Toxicol Environ Health A 69:109–123. doi:10.1080/15287390500259327

    Article  CAS  PubMed  Google Scholar 

  • Jurelevicius D, Alvarez VM, Marques JM, et al. (2013) Bacterial community response to petroleum hydrocarbon amendments in freshwater, marine, and hypersaline water-containing microcosms. Appl Environ Microbiol 79:5927–5935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurelevicius D, de Almeida Couto CR, Alvarez VM et al (2014) Response of the archaeal community to simulated petroleum hydrocarbon contamination in marine and hypersaline ecosystems. Water Air Soil Pollut 225:1–12

    Article  CAS  Google Scholar 

  • Kebbouche-Gana S, Gana ML, Khemili S et al (2009) Isolation and characterization of halophilic Archaea able to produce biosurfactants. J Ind Microbiol Biotechnol 36:727–738

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, et al. (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci 82:6955–6959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leahy J, Colwell R (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40:3671–3682

    Article  CAS  PubMed  Google Scholar 

  • MacNaughton SJ, Stephen JR, Venosa AD et al (1999) Microbial population changes during bioremediation of an experimental oil spill. Appl Environ Microbiol 65:3566–3574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    Article  CAS  PubMed  Google Scholar 

  • McGenity TJ (2010) Halophilic hydrocarbon degraders. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag Berlin Heidelberg, Berlin, pp 1939–1951

  • Militon C, Jézéquel R, Gilbert F, et al. (2015) Dynamics of bacterial assemblages and removal of polycyclic aromatic hydrocarbons in oil-contaminated coastal marine sediments subjected to contrasted oxygen regimes. Environ Sci Pollut Res 22:15260–15272

    Article  CAS  Google Scholar 

  • Mutlu MB, Martínez-García M, Santos F, et al. (2008) Prokaryotic diversity in Tuz Lake, a hypersaline environment in Inland Turkey. FEMS Microbiol Ecol 65:474–483, doi:10.1111/j.1574-6941.2008.00510.x

    Article  CAS  PubMed  Google Scholar 

  • Nomura M, Gourse R, Baughman G (1984) Regulation of the Synthesis of Ribosomes and Ribosomal Components. Annu Rev Biochem 53:75–117. doi:10.1146/annurev.bi.53.070184.000451

    Article  CAS  PubMed  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A (2001) The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystems. Hydrobiologia 466:61–72

    Article  CAS  Google Scholar 

  • Oren A, Arahal DR, Ventosa A (2009) Emended descriptions of genera of the family Halobacteriaceae. Int J Syst Evol Microbiol 59:637–642

    Article  PubMed  Google Scholar 

  • Pérez-Pantoja D, González B, Pieper DH (2010) Aerobic degradation of aromatic hydrocarbons. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin Heidelberg, Berlin, pp 799–837

    Chapter  Google Scholar 

  • Plotnikova EG, Altyntseva OV, Kosheleva IA et al (2001) Bacterial degraders of polycyclic aromatic hydrocarbons isolated from salt-contaminated soils and bottom sediments in salt mining areas. Microbiology 70:51–58. doi:10.1023/A:1004892804670

    Article  CAS  Google Scholar 

  • Redmond MC, Valentine DL (2012) Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proc Natl Acad Sci 109:20292–20297. doi: 10.1073/pnas.1108756108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhykerd RL, Weaver RW, McInnes KJ (1995) Influence of salinity on bioremediation of oil in soil. Environ Pollut 90:127–130

    Article  CAS  PubMed  Google Scholar 

  • Rojo F (2010) Enzymes for aerobic degradation of alkanes. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin Heidelberg, Berlin, pp 781–798

    Chapter  Google Scholar 

  • Röling WF, Milner MG, Jones DM et al (2004) Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol 70:2603–2613

    Article  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schneegurt MA (2012) Media and conditions for the growth of halophilic and halotolerant bacteria and archaea. In: Advances in Understanding the Biology of Halophilic Microorganisms. Springer, pp 35–58

  • Shimizu S (2001) Vitamins and related compounds: microbial production. In: Rehm H-J, Reed G (eds) Biotechnology. Wiley, New York, pp 318–340

  • Southworth GR (1979) The role of volatilization in removing polycyclic aromatic hydrocarbons from aquatic environments. Bull Environ Contam Toxicol 21:507–514. doi:10.1007/BF01685462

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapilatu YH, Grossi V, Acquaviva M et al (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14:225–231

    Article  CAS  PubMed  Google Scholar 

  • Usami R, Fukushima T, Mizuki T, et al. (2005) Organic solvent tolerance of halophilic archaea, Haloarcula strains: Effects of NaCl concentration on the tolerance and polar lipid composition. J Biosci Bioeng 99:169–174. doi:10.1263/jbb.99.169

    Article  CAS  PubMed  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ward DM, Brock TD (1978) Hydrocarbon biodegradation in hypersaline environments. Appl Environ Microbiol 35:353–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wessel N, Santos R, Menard D et al (2010) Relationship between PAH biotransformation as measured by biliary metabolites and EROD activity, and genotoxicity in juveniles of sole (Solea solea). Mar Environ Res 69(Suppl):S71–S73. doi:10.1016/j.marenvres.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  • Wright ES, Yilmaz LS, Noguera DR (2012) DECIPHER, a Search-Based Approach to Chimera Identification for 16S rRNA Sequences. Appl Environ Microbiol 78:717–725. doi: 10.1128/AEM.06516-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakimov MM, Denaro R, Genovese M, et al. (2005) Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol 7:1426–1441

    Article  CAS  PubMed  Google Scholar 

  • Zheng S, Qiu X, Chen B et al (2011) Toxicity evaluation of benzo [a] pyrene on the polychaete Perinereis nuntia using subtractive cDNA libraries. Aquat Toxicol 105:279–291

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was carried out as part of Yannick Corsellis’s PhD research, of Marc Krasovec’s master these and of the French National Program EC2CO BEMOL (Biodégradation des hydrocarbures dans les Écosystèmes hypersalés: Mythe Ou réaLité ?). We thank the Centre National de la Recherche Scientifique (CNRS) and the Institut National des Sciences de l’Univers (INSU) for financial support. Yannick Corsellis was granted a MERNT fellowship (Ministry of Education, Research and Technology, France). We thank the Salins Company for given us access to their hypersaline lake, Anne-Marie Abrard and Georges Argyris for the valuable help for the sampling period. We dedicate this paper to the memory of Michel Matra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannick Y. Corsellis.

Additional information

Communicated by F. Robb.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 471 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corsellis, Y.Y., Krasovec, M.M., Sylvi, L.L. et al. Oil removal and effects of spilled oil on active microbial communities in close to salt-saturation brines. Extremophiles 20, 235–250 (2016). https://doi.org/10.1007/s00792-016-0818-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0818-x

Keywords

Navigation