Skip to main content
Log in

Prokaryotic diversity in a Tunisian hypersaline lake, Chott El Jerid

Extremophiles Aims and scope Submit manuscript

Abstract

Prokaryotic diversity was investigated in a Tunisian salt lake, Chott El Jerid, by quantitative real-time PCR, denaturing gradient gel electrophoresis (DGGE) fingerprinting methods targeting the 16S rRNA gene and culture-dependent methods. Two different samples S1-10 and S2-10 were taken from under the salt crust of Chott El Jerid in the dry season. DGGE analysis revealed that bacterial sequences were related to Firmicutes, Proteobacteria, unclassified bacteria, and Deinococcus-Thermus phyla. Anaerobic fermentative and sulfate-reducing bacteria were also detected in this ecosystem. Within the domain archaea, all sequences were affiliated to Euryarchaeota phylum. Quantitative real-time PCR showed that 16S rRNA gene copy numbers of bacteria was 5 × 106 DNA copies g−1 whereas archaea varied between 5 × 105 and 106 DNA copies g−1 in these samples. Eight anaerobic halophilic fermentative bacterial strains were isolated and affiliated with the species Halanaerobium alcaliphilum, Halanaerobium saccharolyticum, and Sporohalobacter salinus. These data showed an abundant and diverse microbial community detected in the hypersaline thalassohaline environment of Chott El Jerid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baati H, Guermazi S, Amdouni R, Gharsallah N, Sghir A, Ammar E (2008) Prokaryotic diversity of a Tunisian multipond solar saltern. Extremophiles 12:505–518. doi:10.1007/s00792-008-0154-x

    Article  CAS  PubMed  Google Scholar 

  • Baati H, Guermazi S, Gharsallah N, Sghir A, Ammar E (2010) Novel prokaryotic diversity in sediments of Tunisian multipond solar saltern. Res Microbiol 161:573–582. doi:10.1016/j.resmic.2010.05.009

    Article  PubMed  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ben Abdallah M, Karray F, Mhiri N, Cayol JL, Tholozan JL, Alazard D, Sayadi S (2015) Characterization of Sporohalobacter salinus sp. nov., an anaerobic, halophilic, fermentative bacterium isolated from a hypersaline lake. Int J Syst Evol Microbiol 65:543–548. doi:10.1099/ijs.0.066845-0

    Article  CAS  PubMed  Google Scholar 

  • Brosius J, Dull TJ, Sleeter DD, Noller HF (1981) Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148:107–127. doi:10.1016/0022-2836(81)90508-8

    Article  CAS  PubMed  Google Scholar 

  • Casamayor EO, Massana R, Benlloch S, Øvreås L, Díez B, Goddard VJ, Gasol JM, Joint I, Rodríguez-Valera F, Pedrós-Alió C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348. doi:10.1046/j.1462-2920.2002.00297.x

    Article  PubMed  Google Scholar 

  • Cayol JL, Ollivier B, Lawson A, Soh ALS, Fardeau ML, Ageron E, Grimont PAD, Prensier G, Guezennec J, Magot M, Garcia JL (1994) Haloincola saccharolytica subsp. senegalensis subsp. nov., isolated from the sediments of a hypersaline lake, and emended description of Haloincola saccharolytica. Int J Syst Bacteriol 44:805–811. doi:10.1099/00207713-44-4-805

    Article  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal Database Project: improved alignements and new tools for rRNA analysis. Nucleic Acids Res 37:141–145. doi:10.1093/nar/gkn879

    Article  Google Scholar 

  • DeLong EF (1992) Archaea in costal marine environments. Proc Natl Acad Sci USA 89:5685–5689. doi:10.1073/pnas.89.12.5685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Demergasso C, Escudero L, Casamayor EO, Chong G, Balagué V, Pedrós-Alió C (2008) Novelty and spatio–temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12:491–504. doi:10.1007/s00792-008-0153-y

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Zhang G, Jiang H, Yu B, Chapman LR, Lucas CR, Fields MW (2006) Microbial diversity in sediments of saline Qinghai Lake, China: linking geochemical controls to microbial ecology. Microb Ecol 51:65–82. doi:10.1007/s00248-005-0228-6

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Emmerich M, Bhansali A, Lösekann-Behrens T, Schröder C, Kappler A, Behrens S (2012) Abundance, distribution, and activity of Fe(II)-oxidizing and Fe(III)-reducing microorganisms in hypersaline sediments of Lake Kasin, southern Russia. Appl Environ Microbiol 78:4386–4399. doi:10.1128/AEM.07637-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foti MJ, Sorokin DY, Zacharova EE, Pimenov NV, Kuenen JG, Muyzer G (2008) Bacterial diversity and activity along a salinity gradient in soda lakes of the Kulunda Steppe (Altai, Russia). Extremophiles 12:133–145. doi:10.1007/s00792-007-0117-7

    Article  CAS  PubMed  Google Scholar 

  • Großkopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64:960–969

    PubMed Central  PubMed  Google Scholar 

  • Hedi A, Fardeau ML, Sadfi N, Boudabous A, Ollivier B, Cayol JL (2009) Characterization of Halanaerobaculum tunisiense gen. nov., sp. nov., a new halophilic fermentative, strictly anaerobic bacterium isolated from a hypersaline lake in Tunisia. Extremophiles 13:313–319. doi:10.1007/s00792-008-0218-y

    Article  CAS  PubMed  Google Scholar 

  • Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132

    Article  CAS  Google Scholar 

  • Kbir-Ariguib N, Ben Hassan Chehimi D, Zayani L (2001) Treatment of Tunisian salt lakes using solubility phase diagrams. Pure Appl Chem 73:761–770

    Article  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acids techniques in bacterial systematics. Wiley, Chichester, pp 115–147

    Google Scholar 

  • Makhdoumi-Kakhki A, Amoozegar MA, Kazemi B, Pašić L, Ventosa A (2012) Prokaryotic diversity in Aran-Bidgol salt lake, the largest hypersaline playa in Iran. Microbes Environ 27:87–93. doi:10.1264/jsme2.ME11267

    Article  PubMed Central  PubMed  Google Scholar 

  • Maturrano L, Santos F, Rosselló-Mora R, Antón J (2006) Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895. doi:10.1128/AEM.02214-05

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mezghani M, Alazard D, Karray F, Cayol JL, Joseph M, Postec A, Fardeau ML, Tholozan JL, Sayadi S (2012) Halanaerobacter jeridensis sp. nov., isolated from a hypersaline lake. Int J Syst Evol Microbiol 62:1970–1973. doi:10.1099/ijs.0.036301-0

    Article  CAS  PubMed  Google Scholar 

  • Mouné S, Caumette P, Matheron R, Willison JC (2003) Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns. FEMS Microbiol Ecol 44:117–130. doi:10.1016/S0168-6496(03)00017-5

    Article  PubMed  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nadkarni MA, Elizabeth Martin F, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiol 148:257–266. doi:10.1099/00221287-148-1-257

    Article  CAS  Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology and applications. J Ind Microbiol Bitechnol 28:56–63. doi:10.1038/sj/jim/7000176

    Article  CAS  Google Scholar 

  • Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834. doi:10.1080/09593330903370026

    Article  CAS  PubMed  Google Scholar 

  • Ori GG, Pascucci V, Gasmi N, Barbieri R (2009) Tunisian desert: a perfect place to simulate the landing on mars. In: 27th IAS meeting of sedimentology- field trips guide book, SASSARI, EDES, pp 315–342

  • Ruff-Roberts AL, Kuenen JG, Ward DM (1994) Distribution of cultivated and uncultivated cyanobacteria and chloroflexus-like bacteria in hot spring microbial mats. Appl Environ Microbiol 60:697–704

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsai CR, Garcia JL, Patel BKC, Cayol JL, Baresi L, Mah RA (1995) Haloanaerobium alcaliphilum sp. nov., an anaerobic moderate halophile from the sediments of Great Salt Lake, Utah. Int J Syst Evol Microbiol 45:301–307. doi:10.1099/00207713-45-2-301

    CAS  Google Scholar 

  • Ventosa A, Mellado E, Sanchez-Porro C, Marquez MC (2008) Halophilic and halotolerant micro-organisms from soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Springer, Berlin, pp 87–115. doi: 10.1007/978-3-540-74231-9_5

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wright ES, Safak Yilmaz L, Noguera DR (2012) DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 78:717–725. doi:10.1128/AEM.06516-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MBA was supported by the Tunisian Ministry of Higher Education, Scientific Research and Technology fellowship. This work was published with the support of AIRD (JEAI HALOBIOTECH project “Traitement anaérobie des effluents industriels salins et hypersalins par des bioréacteurs membranaires”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Karray.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Oren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdallah, M.B., Karray, F., Mhiri, N. et al. Prokaryotic diversity in a Tunisian hypersaline lake, Chott El Jerid. Extremophiles 20, 125–138 (2016). https://doi.org/10.1007/s00792-015-0805-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-015-0805-7

Keywords

Navigation