, Volume 19, Issue 6, pp 1157–1171 | Cite as

Microbial life in Bourlyashchy, the hottest thermal pool of Uzon Caldera, Kamchatka

  • Nikolay A. Chernyh
  • Andrey V. Mardanov
  • Vadim M. Gumerov
  • Margarita L. Miroshnichenko
  • Alexander V. Lebedinsky
  • Alexander Y. Merkel
  • Douglas Crowe
  • Nikolay V. Pimenov
  • Igor I. Rusanov
  • Nikolay V. Ravin
  • Mary Ann Moran
  • Elizaveta A. Bonch-Osmolovskaya
Original Paper


Bourlyashchy is the largest and hottest pool in the Uzon Caldera, located in the territory of Kronotsky Nature Reserve, Kamchatka, Russia, with sediment surface temperatures at the margins ranging from 86 to 97 °C, and pH from 6.0 to 7.0. The microbial communities of the pool water and sediments were studied comprehensively from 2005 to 2014. Radioisotopic tracer studies revealed the processes of inorganic carbon assimilation, sulfate reduction, lithotrophic methanogenesis and potentially very active process of acetate oxidation to CO2. The total number of microbial cells in water was different in different years ranging from 5.2 to 7.0 × 106; in sediments, it changed from year to year between 6.3 × 106 and 1.75 × 108, increasing with a decrease in temperature. FISH with Archaea- and Bacteria-specific probes showed that the share of Bacteria differed with year, changing from 34 to 71 %. According to 16S rRNA gene pyrosequencing data, lithoautotrophs (Aquificales and Thermoproteales) predominated in water samples, while in sediments they shared the niche with organotrophic Crenarchaeota, Korarchaeota, and bacteria of the genus Caldimicrobium (phylum Thermodesulfobacteria). The majority of organisms in water belonged to cultivated orders of prokaryotes; the only large uncultured group was that representing a novel order in class Thermoprotei. In sediments, unclassified Aquificeae comprised a significant part of the bacterial population. Thus, we showed that the hottest of the terrestrial hot pools studied contains numerous and active microbial populations where Bacteria represent a significant part of the microbial community, and planktonic and sediment populations differ in both composition and function.


Aquificales Hyperthermophiles Pyrosequencing Thermoproteales Terrestrial hot springs 



This work was supported by grant # 14-24-00165 of the Russian Science Foundation, Program “Molecular and Cell Biology” of the Russian Academy of Sciences, as well as grant # 13-04-01695 of the Russian Foundation for Basic Research. The work of N.V.R. group on the analysis of microbial community by pyrosequencing of 16S rRNA genes was supported by Russian Science Foundation (grant 14-14-01016). Field research in Uzon Caldera in 2005, 2006, and 2007 was supported by the MO NSF Grant. We are grateful to the staff of Kronotsky Nature Reserve for their assistance in the organization of field studies in Uzon Caldera. Sequencing was performed using the scientific equipment of the Core research facility “Bioeingineering”. All authors have seen and approved the final version submitted. All local, national and international regulations and conventions, and normal scientific ethical practices have been respected. We state no conflicts of interest.

Supplementary material

792_2015_787_MOESM1_ESM.doc (4.4 mb)
Supplementary material 1 (DOC 4462 kb)


  1. Auchtung T, Shyndriayeva G, Cavanaugh CM (2011) 16S rRNA phylogenetic analysis and quantification of Korarchaeota indigenous to the hot springs of Kamchatka, Russia. Extremophiles 15:105–116CrossRefPubMedGoogle Scholar
  2. Barns SM, Fundyga RE, Jeffries MW, Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA 91:1609–1613PubMedCentralCrossRefPubMedGoogle Scholar
  3. Behnke A, Engel M, Christen R, Nebel M, Klein RR, Stoeck T (2011) Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions. Environ Microbiol 13:340–349CrossRefPubMedGoogle Scholar
  4. Belkova NL, Tazaki K, Zakharova JR, Parfenova VV (2007) Activity of bacteria in water of hot springs from Southern and Central Kamchatskaya geothermal province, Kamchatka Peninsula, Russia. Microbiol Res 162:99–107CrossRefPubMedGoogle Scholar
  5. Berg IA, Ramos-Vera WH, Petri A, Huber H, Fuchs G (2010) Study of the distribution of autotrophic CO2 fixation cycles in Crenarchaeota. Microbiology 156:256–269CrossRefPubMedGoogle Scholar
  6. Bonch-Osmolovskaya EA, Sokolova TG, Kostrikina NA, Zavarzin GA (1990) Desulfurella acetivorans gen. nov., sp. nov., a new thermophilic sulfur-reducing bacterium. Arch Microbiol 153:151–155CrossRefGoogle Scholar
  7. Bonch-Osmolovskaya EA, Miroshnichenko ML, Kostrikina NA, Chernyh NA, Zavarzin GA (1991) Thermoproteus uzoniensis sp. nov., a new extremely thermophilic archaebacterium from Kamchatka continental hot springs. Arch Microbiol 154:556–559Google Scholar
  8. Bonch-Osmolovskaya EA, Miroshnichenko ML, Slobodkin AI, Sokolova TG, Karpov GA, Kostrikina NA et al (1999) Biodiversity of anaerobic prokaryotes in terrestrial hot springs of Kamchatka. Microbiol (Mikrobiologiya) 68:343–351Google Scholar
  9. Boyd ES, Jackson RA, Encarnacion G, Zahn JA, Beard T, Leavitt WD, Zhang CL, Pearson A, Geesey GG (2007) Isolation, characterization and ecology of sulfur-respiring Crenarchaea inhabiting acid-sulfate-chloride containing geothermal sorings in Yellowstone National Park. Appl Environm Microbiol 73:6669–6677CrossRefGoogle Scholar
  10. Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, New YorkCrossRefGoogle Scholar
  11. Burgess EA, Unrine JM, Mills GL, Romanek CS, Wiegel J (2012) Comparative geochemical and microbiological characterization of two thermal pools in the Uzon Caldera, Kamchatka, Russia. Microb Ecol 63:471–489CrossRefPubMedGoogle Scholar
  12. Campbell BJ, Stein JL, Cary SC (2003) Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompejana, a hydrothermal vent polychaete. Appl Environ Microbiol 69:5070–5078PubMedCentralCrossRefPubMedGoogle Scholar
  13. Casamayor EO, Schäfer H, Bañeras L, Pedrós-Alió C, Muyzer G (2000) Identification of spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol 66(499):508Google Scholar
  14. Casanueva A, Galada N, Baker GC, Grant WD, Heaphy S, Jones B et al (2008) Nanoarchaeal 16S rRNA gene sequences are widely dispersed in hyperthermophilic and mesophilic halophilic environments. Extremophiles 12:651–656CrossRefPubMedGoogle Scholar
  15. Castro H, Ogram A, Reddy KR (2004) Phylogenetic characterization of methanogenic assemblages in eutrophic and oligotrophic areas of the Florida Everglades. Appl Environ Microbiol 70:6559–6568PubMedCentralCrossRefPubMedGoogle Scholar
  16. Chan SC, Chan K-G, Tay Y-L, Chua Y-H, Goh KM (2015) Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing. Frontiers Microbiol 6:177Google Scholar
  17. Chernyh N, Frolov E, Miroshnichenko M, Kovaleva O, Prokofieva M, Lebedinsky A, Bonch-Osmolovskaya E (2013) Dissimilatory sulfate reduction in the crenarchaeote “Vulcanisaeta moutnovskia” grown on various substrates. Abstracts of Thermophiles 12th International Meeting at the University of RegensburgGoogle Scholar
  18. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ et al (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:141–145CrossRefGoogle Scholar
  19. Cole JK, Peacock JP, Dodsworth JA, Williams AJ, Thompson DB, Dong H, Hedlund BP (2013) Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities. ISME J 7:718–729PubMedCentralCrossRefPubMedGoogle Scholar
  20. Eme L, Reigstad LJ, Spang A, Lanzén A, Weinmaier T, Rattei T et al (2013) Metagenomics of Kamchatkan hot spring filaments reveal two new major (hyper)thermophilic lineages related to Thaumarchaeota. Res Microbiol 164:425–438CrossRefPubMedGoogle Scholar
  21. Fry JC, Horsfield B, Sykes R, Cragg BA, Heywood C, Kim GT et al (2009) Prokaryotic populations and activities in an interbedded coal deposit, including a previously deeply buried section (1.6–2.3 km) above 150 Ma basement rock. Geomicrobiol J 26:163–178CrossRefGoogle Scholar
  22. Gonzales JM, Sheckells D, Viebahn M, Krupatkina D, Borges KM, Robb FT (1999) Thermococcus waiotapuensis sp. nov., an extremely thermophilic archaeon isolated from a freshwater hot spring. Arch Microbiol 172:95–101CrossRefGoogle Scholar
  23. Gorlenko VM, Bonch-Osmolovskaya EA, Kompantseva EI, Starynin DA (1987) Differentiation of microbial communities in connection with a change in the physicochemical conditions in Thermophile spring. Microbiol (Mikrobiologiya) 56:250–257Google Scholar
  24. Gumerov VM, Mardanov AV, Beletsky AV, Bonch-Osmolovskaya EA, Ravin NV (2011) Molecular analysis of microbial diversity in the Zavarzin spring, Uzon Caldera Kamchatka. Mikrobiol (Mikrobiologiya) 80:258–265Google Scholar
  25. Hedlund BP, Cole JK, Williams AJ, Hou W, Zhou E, Li W, Dong H (2012) A review of the microbiology of the Rehai geothermal field in Tengchong, Yunnan Province, China. Geosci Front 3:273–288CrossRefGoogle Scholar
  26. Hohn MJ, Hedlund BP, Huber H (2002) Detection of 16S rDNA sequences representing the novel phylum “Nanoarchaeota”: indication for a wide distribution in high temperature biotopes. Syst Appl Microbiol 25:551–554CrossRefPubMedGoogle Scholar
  27. Huang Q, Jiang H, Briggs BR, Wang S, Hou W, Li G, Wu G, Solis R, Arcilla CA, Abrajano T, Dong H (2013) Archaeal and bacterial diversity in acidic to circumneutral hot springs in the Philippines. FEMS Microbiol Ecol 85:452–464CrossRefPubMedGoogle Scholar
  28. Huber JA, Mark Welch DB, Morrison HG, Huse SM, Neal PR, Butterfield DA, Sogin ML (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100CrossRefPubMedGoogle Scholar
  29. Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376PubMedCentralPubMedGoogle Scholar
  30. Hügler M, Gärtner A, Imhoff JF (2011) Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of hydrothermal vents of the Logatchev field. FEMS Microbiol Ecol 73:526–537Google Scholar
  31. Inskeep WP, Rusch DB, Zackary JJ, Herrgard MJ, Kozubal MA, Richardson TH et al (2010) Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS ONE 5:1–15CrossRefGoogle Scholar
  32. Inskeep WP, Jay ZJ, Tringe SG, Herrgard MJ, Rusch DB et al (2013) The YNP metagenome project: environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem. Front Microbiol 4:67PubMedCentralPubMedGoogle Scholar
  33. Itoh T, Iino T (2013) Phylogeny and biological features of thermophiles. In: Satyanayarana T, Kawarabayasi Y, Littlechild J (eds) Thermophilic microbes in environmental and industrial biotechnology: biotechnology of thermophiles. Springer, Dordrecht, pp 249–270CrossRefGoogle Scholar
  34. Kublanov IV, Perevalova AA, Slobodkina GB, Lebedinsky AV, Bidzhieva SKh et al (2009) Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon Caldera, Kamchatka. Appl Environ Microbiol 75:286–291PubMedCentralCrossRefPubMedGoogle Scholar
  35. Lau MC, Aitchison JC, Pointing SB (2009) Bacterial community composition in thermophilic microbial mats from five hot springs in Central Tibet. Extremophiles 13:139–149CrossRefPubMedGoogle Scholar
  36. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW et al (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809CrossRefPubMedGoogle Scholar
  37. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371Google Scholar
  38. Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530CrossRefPubMedGoogle Scholar
  39. Mardanov AV, Gumerov VM, Beletsky AV, Perevalova AA, Karpov GA, Bonch-Osmolovskaya EA et al (2011a) Uncultured archaea dominate in the thermal groundwater of Uzon Caldera, Kamchatka. Extremophiles 15:365–372CrossRefPubMedGoogle Scholar
  40. Mardanov AV, Gumerov VM, Beletsky AV, Prokofeva MI, Bonch-Osmolovskaya EA, Ravin NV et al (2011b) Complete genome sequence of the thermoacidophilic crenarchaeon Thermoproteus uzoniensis 768-20. J Bacteriol 193:3156–3157PubMedCentralCrossRefPubMedGoogle Scholar
  41. Mehta MP, Butterfield DA, Baross JA (2003) Phylogenetic diversity of nitrogenase (nifH) genes in deep-sea and hydrothermal vent environments of the Juan de Fuca Ridge. Appl Environ Microbiol 69:960–970PubMedCentralCrossRefPubMedGoogle Scholar
  42. Merkel AY, Podosokorskaya OA, Chernyh NA, Bonch-Osmolovskaya EA (2015) Distribution, diversity and numbers of methanogenic archaea in terrestrial hot springs of Kamchatka and Saint-Miguel Island. Microbiol (Mikrobiologiya) 84:1–8Google Scholar
  43. Miroshnichenko ML, Kostrikina NA, Rainey FA, Hippe H, Bonch-Osmolovskaya EA (1998) Desulfurella kamchatkensis sp. nov. and Desulfurella propionica sp. nov., new thermophilic sulfur-reducing bacteria from Kamchatka hot vents. Int J System Bacteriol 48:475–479CrossRefGoogle Scholar
  44. Miroshnichenko ML, Hippe H, Stackebrandt E, Kostrikina NA, Chernyh NA, Jeanthon C, Nazina TN, Belyaev SS, Bonch-Osmolovskaya EA (2001) Isolation and characterization of Thermococcus sibiricus sp. nov. from a Western Siberia high-temperature oil reservoir. Extremophiles 5:85–91CrossRefPubMedGoogle Scholar
  45. Miroshnichenko ML, Tourova TP, Kolganova TP, Kostrikina NA, Bonch-Osmolovskaya EA (2008) Ammonifex thiophilus sp. nov., a hyperthermophilic anaerobic bacterium from a Kamchatka hot spring. Int J Syst Evol Microbiol 58:2935–2938CrossRefPubMedGoogle Scholar
  46. Miroshnichenko ML, Lebedinsky AV, Chernyh NA, Tourova TP, Kolganova TV, Spring S, Bonch-Osmolovskaya EA (2009) Caldimicrobium rimae gen. nov., sp. nov., a novel extremely thermophilic facultatively lithoautotrophic anaerobic bacterium from the Uzon Caldera, Kamchatka. Int J Syst Evol Microbiol 59:1040–1044CrossRefPubMedGoogle Scholar
  47. Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16 s rRNA. Appl Environ Microbiol 59:695–700PubMedCentralPubMedGoogle Scholar
  48. Nakagawa T, Fukui M (2002) Phylogenetic characterization of microbial mats and streamers from a Japanese alkaline hot spring with a thermal gradient. J Gen Appl Microbiol 48:211–222CrossRefPubMedGoogle Scholar
  49. Narihiro T, Hori T, Nagata O, Hoshino T, Yumoto I, Kamagata Y (2011) The impact of aridification and vegetation type on changes in the community structure of methane-cycling microorganisms in Japanese wetland soils. Biosci Biotechnol Biochem 75:1727–1734CrossRefPubMedGoogle Scholar
  50. Perevalova AA, Kolganova TV, Birkeland N-K, Schleper C, Bonch-Osmolovskaya EA, Lebedinsky AV (2008) Distribution of Crenarchaeota representatives in terrestrial hot springs of Russia and Iceland. Appl Environ Microbiol 74:7620–7628PubMedCentralCrossRefPubMedGoogle Scholar
  51. Pernthaler J, Glöckner FO, Schönhuber W, Amann R (2001) Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. Methods Microbiol 30:207–226CrossRefGoogle Scholar
  52. Pimenov NV, Bonch-Osmolovskaya EA (2006) In situ activity studies in thermal environments. In: Rainey FA, Oren A (eds) Methods in microbiology. Extremophiles, vol 35. Elsevier, Academic Press, Amsterdam, Boston, Heidelberg, pp 29–54Google Scholar
  53. Podosokorskaya OA, Kadnikov VV, Gavrilov SN, Mardanov AV, Merkel AY, Karnachuk OV, Ravin NV, Bonch-Osmolovskaya EA, Kublanov IV (2013) Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae. Environ Microbiol 15:1759–1771CrossRefPubMedGoogle Scholar
  54. Purcell DU, Sompomg U, Yim LC, Barraclough TG, Peerapornisal Y, Pointing SB (2007) The effects of temperature, pH and sulfide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand. FEMS Microbiol Ecol 60:456–466CrossRefPubMedGoogle Scholar
  55. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinformatics 28:12–38Google Scholar
  56. Reigstad LJ, Richter A, Daims H, Urich T, Schwark L, Schleper C (2008) Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS Microbiol Ecol 64:167–174CrossRefPubMedGoogle Scholar
  57. Reigstad LJ, Jorgensen SL, Schleper C (2010) Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka. ISME J 4:346–356CrossRefPubMedGoogle Scholar
  58. Reysenbach A-L, Wickham GS, Pace NR (1994) Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl Environ Microbiol 60:2113–2119PubMedCentralPubMedGoogle Scholar
  59. Reysenbach A-L, Ehringer M, Hershberger K (2000) Microbial diversity at 83°C in Calcite Spring, Yellowstone National Park: another environment where the Aquificales and “Korarchaeota” coexist. Extremophiles 4:61–67PubMedGoogle Scholar
  60. Ronimus RS, Reysenbach AL, Musgrave DR, Morgan HW (1997) The phylogenetic position of the Thermococcus isolate AN1 based on 16S rRNA gene sequence analysis: a proposal that AN1 represents a new species. Thermococcus zilligii sp. nov. Arch Microbiol 168:245–248CrossRefPubMedGoogle Scholar
  61. Rozanov AS, Bryanskaya AV, Malup TK, Meshcheryakova IA, Lazareva EV, Taran OP, Ivanisenko TV, Ivanisenko VA, Zhmodik SM, Kolchanov NA, Peltek SE (2014) Molecular analysis of the benthos microbial community in Zavarzin thermal spring (Uzon Caldera, Kamchatka, Russia). BMC Genom 15:2–15CrossRefGoogle Scholar
  62. Sahm K, John P, Nacke H, Wemheuer B, Grote R, Daniel R, Antranikian G (2013) High abundance of heterotrophic prokaryotes in hydrothermal sorings of the Azores as revealed by a network of 16S rRNA gene-based methods. Extremophiles 17:649–662CrossRefPubMedGoogle Scholar
  63. Siering PL, Clarke JN, Wilson MS (2006) Geochemical and biological diversity of active hot springs in Lasen Volcanic National Park. Geomicrobiol J 23:129–141CrossRefGoogle Scholar
  64. Skirnisdottir S, Hreggvidsson GO, Hjörleifsdottir S, Marteinsson VT, Petursdottir SK, Holst O, Kristjansson JK (2000) Influence of sulfide and temperature on species composition community structure of hot spring microbial mats. Appl Environ Microbiol 66:2835–2841PubMedCentralCrossRefPubMedGoogle Scholar
  65. Slobodkina GB, Chernyh NA, Slobodkin AI, Subbotina IV, Bonch-Osmolovskaya EA, Lebedinsky AV (2004) PCR-based detection of hyperthermophilic Archaea of the family Thermococcaceae. Appl Environm Microbiol 70:5701–5703CrossRefGoogle Scholar
  66. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120PubMedCentralCrossRefPubMedGoogle Scholar
  67. Spear JR, Walker JJ, McCollom TM, Pace N (2005) Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc Natl Acad Sci USA 102:2555–2560PubMedCentralCrossRefPubMedGoogle Scholar
  68. Stahl DA, Amann R (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley and Sons, New York, pp 205–248Google Scholar
  69. Steinberg LM, Regan JM (2008) Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl Environ Microbiol 74:6663–6671PubMedCentralCrossRefPubMedGoogle Scholar
  70. Steinberg LM, Regan JM (2009) mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Appl Environ Microbiol 75:4435–4442PubMedCentralCrossRefPubMedGoogle Scholar
  71. Stetter KO (1996) Hyperthermophilic prokaryotes. FEMS Microbiol Rev 18:149–158CrossRefGoogle Scholar
  72. Stetter KO, Hohn MJ, Huber H, Rachel R, Mathur E, Hedlund, B et al. 2005. A novel kingdom of parasitic Archaea. In “Geothermal Biology and Geochemistry in Yellowstone National Park”. Proceeding of the Thermal Biology Institute Workshop, Yellow-stone National Park, WY, October 2003, eds W. P. Inskeep and T. R. McDermott (Bozeman, MT: Montana State University Publications), pp 249–259Google Scholar
  73. Takacs CD, Ehringer M, Favre R, Cermola M, Eggetsson G, Palsdottir A, Reysenbach A (2001) Phylogenetic characterization of the blue filamentous community from Icelandic hot spring. FEMS Microbiol Ecol 35:123–128CrossRefPubMedGoogle Scholar
  74. Takacs-Verbach C, Inskeep WP, Jay ZJ, Herrgard MJ, Rusch DB, Tringle SG et al (2013) Metagenome sequence analysis of filamentous microbial communities obtained from geochemically distinct geothermal channels reveals specialization of three Aquificales lineages. Frontiers Microbiol. 4:84Google Scholar
  75. Takeuchi M, Yoshioka H, Seo Y, Tanabe S, Tamaki H, Kamagata Y, Takahashi HA, Igari S, Mayumi D, Sakata S (2011) A distinct freshwater-adapted subgroup of ANME-1 dominates active archaeal communities in terrestrial sub-surfaces in Japan. Environ Microbiol 13:3206–3218CrossRefPubMedGoogle Scholar
  76. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molec Biol Evol 30:2725–2729PubMedCentralCrossRefPubMedGoogle Scholar
  77. Urbeita MS, Gozales Toril E, Giaveno MA, Aquilera Bazan A, Donati ER (2014) Archaeal and bacterial diversity in five different hydrothermal ponds in the Copahue region of Argentina. Syst Appl Microbiol 37:429–441CrossRefGoogle Scholar
  78. Ver Eecke HC, Butterfield DA, Huber JA, Lilley MD, Olson EJ, Roe KK et al (2012) Hydrogen-limited growth of hyperthermophilic methanogens at deep-sea hydrothermal vents. Proc Natl Acad Sci USA 109:13674–13679PubMedCentralCrossRefPubMedGoogle Scholar
  79. Vick TJ, Dodsworth JA, Costa KC, Shock EL, Hedlund BP (2010) Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera. Geobiology 8:140–154CrossRefPubMedGoogle Scholar
  80. Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982PubMedCentralPubMedGoogle Scholar
  81. Wagner ID, Varghese LB, Hemme CL, Wiegel J (2013) Multilocus sequence analysis of Thermoanaerobacter isolates reveals recombining, but differentiated, populations from geothermal springs of the Uzon Caldera, Kamchatka, Russia. Front Microbiol 21:4–169Google Scholar
  82. Walters WA, Caporaso JG, Lauber CL, Berg-Lyons D, Fierer N, Knight R (2011) PrimerProspector: de novo design and taxonomic analysis of barcoded PCR primers. Bioinformatics 27:2–4CrossRefGoogle Scholar
  83. Wemheuer B, Taube R, Akyol P, Wemheuer F, Daniel R (2013) Microbial diversity and biochemical potential encoded by thermal spring metagenomes derived from the Kamchatka Peninsula. Archaea 2013:1–13CrossRefGoogle Scholar
  84. Wiegel J (1992) The obligately anaerobic thermophilic bacteria. In: Kristjansson JK (ed) Thermophilic bacteria. CRC Press, Boca Raton, pp 105–184Google Scholar
  85. Yamamoto H, Hiraishi A, Kato K, Chiura HX, Maki Y, Shimizu A (1998) Phylogenetic evidence for the existence of novel thermophilic bacteria in hot spring sulfur-turf microbial mats in Japan. Appl Environ Microbiol 64:1680–1687PubMedCentralPubMedGoogle Scholar
  86. Zhao W, Romanek CS, Mills G, Wiegel J, Zhang CL (2005) Geochemistry and microbiology of hot springs in Kamchatka, Russia. Geological J China Univ 11:217–223Google Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Nikolay A. Chernyh
    • 1
  • Andrey V. Mardanov
    • 2
  • Vadim M. Gumerov
    • 2
  • Margarita L. Miroshnichenko
    • 1
  • Alexander V. Lebedinsky
    • 1
  • Alexander Y. Merkel
    • 1
  • Douglas Crowe
    • 3
  • Nikolay V. Pimenov
    • 1
  • Igor I. Rusanov
    • 1
  • Nikolay V. Ravin
    • 2
  • Mary Ann Moran
    • 4
  • Elizaveta A. Bonch-Osmolovskaya
    • 1
  1. 1.Winogradsky Institute of MicrobiologyResearch Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
  2. 2.Institute of BioengineeringResearch Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
  3. 3.Department of GeologyUniversity of GeorgiaAthensUSA
  4. 4.Department of Marine ScienceUniversity of GeorgiaAthensUSA

Personalised recommendations