, Volume 18, Issue 6, pp 1075–1084 | Cite as

Picophytoplankton predominance in hypersaline lakes (Transylvanian Basin, Romania)

  • Boglárka Somogyi
  • Lajos Vörös
  • Károly Pálffy
  • Gyöngyi Székely
  • Csaba Bartha
  • Zsolt Gyula KeresztesEmail author
Original Paper


The occurrence and importance of photoautotrophic picoplankton (PPP, cells with a diameter <2 μm) was studied along a trophic and salinity gradient in hypersaline lakes of the Transylvanian Basin (Romania). The studied lakes were found to be rich in PPP, with abundances (maximum 7.6 × 106 cells mL−1) higher than in freshwater and marine environments of similar trophic conditions. The contribution of PPP to the total phytoplankton biovolume did not decrease with increasing trophic state as it was generally found in other aquatic environments. Regardless of the trophic conditions, the contribution of PPP could reach 90–100 % in these hypersaline lakes. We hypothesized that the PPP predominance might be the result of the low grazing pressure, since heterotrophic nanoflagellates (the main grazers of PPP) were absent in the studied samples. There were significant differences in community composition among the lakes along the salinity gradient. CyPPP predominated in less saline waters (mainly below 5 %), while EuPPP were present along the entire salinity range (up to 18.7 %), dominating the phytoplankton between 3 and 13 % salinity. Above 13 % salinity, the phytoplankton was composed mainly of Dunaliella species.


Picoplankton importance Phytoplankton composition Salinity gradient Trophic gradient Inland saline lakes Transylvania 





Deep chlorophyll a maximum


Denaturing gradient gel electrophoresis


Dissolved oxygen




Heterotrophic nanoflagellates


Photoautotrophic picoplankton


Specific conductance



This work was supported by the Human Resources Development Program (POSDRU 88/1.5/S/60185, Doctoral studies: through science toward society), CNCSIS/UEFISCDI TE306/70 2010-2013, the Hungarian Scientific Research Fund (OTKA K 73369) and partly by the Romanian National Authority for Scientific Research, CNCS–UEFIS-CDI, project numbers PN-II-ID-PCE-2011-3-0546. The authors are grateful to Balázs Németh, Éva Koltai and Erika Nagy for their technical assistance. Boglárka Somogyi was supported by the Bolyai János Research Grant (Hungarian Academy of Sciences) and Zsolt Gyula Keresztes supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP-4.2.4.A/2-11/1-2012-0001 ‘National Excellence Program’ and Collegium Talentum, Tatabánya.


  1. Agawin NSR, Duarte CM, Agusti S (2000) Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol Oceanogr 45:591–600CrossRefGoogle Scholar
  2. Alexe M (2010) Studiul lacurilor sarate din Depresiunea Transilvaniei. Cluj University Press, Cluj-NapocaGoogle Scholar
  3. Alexe M, Serban G (2008) Considerations regarding the salinity and water temperature of salty lakes of Sovata and Ocna Sibiului. Studia Univ “Vasile Goldis” Arad 18:305–311Google Scholar
  4. Alinei R, Ionica A, Cheratoiu C, Cicu A, Gheorghita D, Guzu D, Falamas R, Bucurenciu C, Arimie B, Morinescu M, Oprean L (2006) Isolation of halophilic microorganisms in the saline lakes from Ocna Sibiului and analysis of red pigments production. Acta Univ Cibiensis E Food Technol X/2:21–33Google Scholar
  5. Bec B, Collos Y, Souchu P, Vaquer A, Lautier J, Fiandrino A, Benau L, Orsoni V, Laugier T (2011) Distribution of picophytoplankton and nanophytoplankton along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Aquat Microb Ecol 63:29–45CrossRefGoogle Scholar
  6. Bell T, Kalff J (2001) The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnol Oceanogr 46:1243–1248CrossRefGoogle Scholar
  7. Boehrer B, Schultze M (2008) Stratification of lakes. Rev Geophys 46:RG2005. doi: 10.1029/2006RG000210 CrossRefGoogle Scholar
  8. Borsodi AK, Felföldi T, Máthé I, Bognár V, Knáb M, Krett G, Jurecska L, Tóth EM, Márialiget K (2013) Phylogenetic diversity of bacterial and archaeal communities inhabiting the saline Lake Red located in Sovata, Romania. Extremophiles 17:87–98PubMedCrossRefGoogle Scholar
  9. Budinoff CR, Hollibaugh JT (2007) Ecophysiology of a Mono Lake picocyanobacterium. Limnol Oceanogr 52:2484–2495CrossRefGoogle Scholar
  10. Bulgăreanu VAC (1996) Protection and management of anthroposaline lakes in Romania. Lakes Reserv Res Manag 2:211–229CrossRefGoogle Scholar
  11. Callieri C (2008) Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshw Rev 1:1–28CrossRefGoogle Scholar
  12. Craig SR (1984) Productivity of algal picoplankton in a small meromictic lake. Verh Internat Verein Limnol 22:351–354Google Scholar
  13. Crosbie ND, Teubner K, Weisse T (2003) Flow-cytometric mapping provides novel insights into the seasonal and vertical distributions of freshwater autotrophic picoplankton. Aquat Microb Ecol 33:53–66CrossRefGoogle Scholar
  14. Elloumi J, Carrias JF, Ayadi H, Sime-Ngando T, Bouain A (2009) Comminities structure of the planktonic halophiles in the solar saltern of Sfax, Tunisia. Est Coast Shelf Sci 81:19–26CrossRefGoogle Scholar
  15. Estrada M, Henriksen P, Gasol JM, Casamayor EO, Pedrós-Alió C (2004) Diversity of planktonic photoautotrophic microorganisms along a salinity gradient as depicted by microscopy, flow cytometry, pigment analysis and DNA-based methods. FEMS Microbiol Ecol 49:281–293PubMedCrossRefGoogle Scholar
  16. Fanjing K, Qinxian J, Jia E, Mianping Z (2009) Characterization of a eukaryotic picoplankton alga, strain DGN-Z1, isolated from a soda lake in inner Mongolia, China. Nat Resour Env Iss 15:185–189Google Scholar
  17. Hammer UT (1986) Saline lake ecosystems of the world. Dr W. Junk Publishers, DordrechtGoogle Scholar
  18. Henley WJ, Major KM, Hironaka JL (2002) Response to salinity and heat stress in two halotolerant chlorophyte algae. J Phycol 38:757–766CrossRefGoogle Scholar
  19. Ionescu V, Năstăsescu M, Spiridon L, Bulgăreanu VAC (1998) The biota of Romanian lakes on rock salt bodies: a review. Intern J Salt Lake Res 7:45–80Google Scholar
  20. Irimuş IA (1998) Relieful pe domuri şi cute diapire în Depresiunea Transilvaniei. Cluj University Press, Cluj-NapocaGoogle Scholar
  21. Jahnke LS, White AL (2003) Long-term hyposaline and hypersaline stresses produce distinct antioxidant responses in the marine alga Dunaliella tertiolecta. J Plant Physiol 160:1193–1202PubMedCrossRefGoogle Scholar
  22. Kalecsinszky J (1901) A Szovátai meleg és forró konyhasóstavakról mint természetes hőakkumulátorokról. Meleg sóstavak és hőakkumulátorok előálításáról. Földrajzi Közlemény, Budapest, p XXXVIIGoogle Scholar
  23. Keresztes ZG, Felföldi T, Somogyi B, Székely G, Dragoş N, Márialigeti K, Bartha C, Vörös L (2012) First record of autotrophic picoplankton diversity in Central European hypersaline lakes. Extremophiles 16:759–769PubMedCrossRefGoogle Scholar
  24. Krienitz L, Bock C, Kotut K, Luo W (2012) Picocystis salinarum (Chlorophyta) in saline lakes and hot springs of East Africa. Phycologia 51:22–32CrossRefGoogle Scholar
  25. Last MW (2002) Geolimnology of salt lakes. Geosci J 6:347–369CrossRefGoogle Scholar
  26. Li WKW, Subba Rao DV, Harrison WG, Smith JC, Cullen JJ, Irwin B, Platt T (1983) Autotrophic picoplankton in the tropical Ocean. Science 219:292–295PubMedCrossRefGoogle Scholar
  27. MacIsaac EA, Stockner JG (1993) Enumeration of phototrophic picoplankton by autofluorescence microscopy. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) The handbook of methods in aquatic microbial ecology. CRC Press, Boca Raton, pp 187–197Google Scholar
  28. Máthé I, Borsodi AK, Tóth EM, Felföldi T, Jurecska L, Krett G, Kelemen Z, Elekes E, Barkács K, Márialigeti K (2014) Vertical physico-chemical gradients with distinct microbial communities in the hypersaline and heliothermal Lake Ursu (Sovata, Romania). Extremophiles. doi: 10.1007/s00792-014-0633-1 PubMedGoogle Scholar
  29. Muntean V, Crişan R, Paşca D, Kiss S, Drăgan-Bularda M (1996) Enzymological classification of salt lakes in Romania. Int J Salt Lake Res 5:35–44CrossRefGoogle Scholar
  30. Nagy L, Péterfi LS (2008) Preliminary data on the diatom communities from “Lacul Sulfuros” (“Lake No. 6”) near Turda (Cluj County), Romania. Contrib Bot XLIII:105–111Google Scholar
  31. Park JS, Kim H, Choi DH, Cho BC (2003) Active flagellates grazing on prokaryotes in high salinity waters of a solar saltern. Aquat Microb Ecol 33:173–179CrossRefGoogle Scholar
  32. Park JS, Cho BC, Simpson AGB (2006) Halocafeteria seosiensis gen. et sp. nov. (Bicosoeida), a halophilic bacteriovorous nanoflagellate isolated from a solar saltern. Extremophiles 10:493–504PubMedCrossRefGoogle Scholar
  33. Pedrós-Ailó C, Calderón-Paz JI, MacLean MH, Medina G, Marrasé C, Gasol JM, Guixa-Boixereu N (2000) The microbial food web along salinity gradients. FEMS Mirob Ecol 32:143–155CrossRefGoogle Scholar
  34. Roesler CS, Culbertson CW, Etheridge SM, Goericke R, Kiene RP, Miller LG, Oremland RS (2002) Distribution, production, and ecophysiology of Picocystis strain ML in Mono Lake, California. Limnol Oceanogr 47:440–452CrossRefGoogle Scholar
  35. Schapira M, Buscot MJ, Pollet T, Letereme SC, Seuront L (2010) Distribution of picophytoplankton communities from brackish to hypersaline waters in a South Australian coastal lagoon. Saline Syst 6:2PubMedCrossRefPubMedCentralGoogle Scholar
  36. Sherr EB, Caron DA, Sherr BF (1993) Staining heterotrophic protists for visualization via epifluorescence. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) The handbook of methods in aquatic microbial ecology. CRC Press, Boca Raton, pp 213–229Google Scholar
  37. Somogyi B, Felföldi T, Vanyovszki J, Ágyi Á, Márialigeti K, Vörös L (2009) Winter bloom of picoeukaryotes in Hungarian shallow turbid soda pans and the role of light and temperature. Aquat Ecol 43:735–744CrossRefGoogle Scholar
  38. Stockner JG (1991) Autotrophic picoplankton in freshwater ecosystems: the view from the summit. Int Rev Hydrobiol 76:483–492CrossRefGoogle Scholar
  39. Utermöhl H (1958) Zur Vervolkommnung der quantitativen Phytoplankton Methodik. Mitt Int Theor Angew Limnol 9:1–38Google Scholar
  40. Vaulot D, Le Gall F, Marie D, Guillou L, Partensky F (2004) The roscoff culture collection (RCC): a collection dedicated to marine picoplankton. Nova Hedwigia 79:49–70CrossRefGoogle Scholar
  41. Vörös L, Mózes A, Somogyi B (2009) A five-year study of autotrophic winter pikoplankton in Lake Balaton, Hungary. Aquat Ecol 43:727–734CrossRefGoogle Scholar
  42. Weisse T (1993) Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. In: Jones JG (ed) Advances in microbial ecology, vol 13. Plenum Press, New York, pp 327–370CrossRefGoogle Scholar
  43. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313CrossRefGoogle Scholar
  44. Williams DW (1998) Guidelines of lake management. Management of inland saline waters, vol Vol 6. International Lake Environment Committee Foundation, JapanGoogle Scholar
  45. Wu QL, Chatzinotas A, Wang J, Boenigk J (2009) Genetic diversity of eukaryotic plankton assemblages in Eastern Tibetan lakes differing by their salinity and altitude. Microb Ecol 58:569–581PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Boglárka Somogyi
    • 1
  • Lajos Vörös
    • 1
  • Károly Pálffy
    • 1
  • Gyöngyi Székely
    • 2
  • Csaba Bartha
    • 2
  • Zsolt Gyula Keresztes
    • 1
    • 3
    Email author
  1. 1.MTA Centre for Ecological ResearchBalaton Limnological InstituteTihanyHungary
  2. 2.Hungarian Department of Biology and Ecology, Faculty of Biology and GeologyBabes-Bolyai UniversityCluj-NapocaRomania
  3. 3.Edutus College, Institute of TechnologyTatabányaHungary

Personalised recommendations