Skip to main content
Log in

Self-assembled bionanoparticles based on the Sulfolobus tengchongensis spindle-shaped virus 1 (STSV1) coat protein as a prospective bioscaffold for nanotechnological applications

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Biomolecule-nanoparticle hybrid bioconjugates based on bioscaffolds such as protein cages and virus capsules have been widely studied. Highly stable and durable biotemplates are a vital pillar in constructing bio-inorganic functional hybrid composites. Here, we introduce a highly heat-resistant coat protein (CP) of Sulfolobus tengchongensis spindle-shaped virus 1 (STSV1) isolated from the hyperthermophilic archaeon as a prospective biological matrix. Our experiments showed that STSV1 CP was successfully cloned and solubly expressed in the Escherichia coli Rosetta-(DE3) host strain. Protein expression was verified by SDS-PAGE and western blot analysis of the reference C-terminally six-histidine (His6) tagged STSV1 CP (HT-CP). Thermal stability experiments showed that the STSV1 coat protein remained fairly stable at 80 °C. The proteins can be purified facilely by heat treatment followed by size exclusion chromatography (SEC). Transmission electron microscopy (TEM) analysis of the purified STSV1 CP protein aggregates demonstrated that the protein could self-assemble into rotavirus-like nanostructures devoid of genetic materials under our experimental conditions. Similar results were obtained for the HT-CP purified by heat treatment followed by Ni-NTA and SEC, indicating that moderately engineered STSV1 CP can retain its self-assembly property. In addition, the STSV1 CP has a high binding affinity for TiO2 nanoparticles. This illustrates that the STSV1 CP can be used as a bioscaffold in nanobiotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  PubMed  Google Scholar 

  • Bruckman MA, Soto CM, McDowell H, Liu JL, Ratna BR, Korpany KV, Zahr OK, Blum AS (2011) Role of hexahistidine in directed nanoassemblies of tobacco mosaic virus coat protein. ACS Nano 5:1606–1616

    Article  CAS  PubMed  Google Scholar 

  • Destito G, Schneemann A, Manchester M (2009) Biomedical nanotechnology using virus-based nanoparticles. Curr Top Microbiol 327:95–122

    CAS  Google Scholar 

  • Ding Y, Chuan YP, He LZ, Middelberg APJ (2010) Modeling the competition between aggregation and self-assembly during virus-like particle processing. Biotechnol Bioeng 107:550–560

    Article  CAS  PubMed  Google Scholar 

  • Douglas T, Young M (1998) Host-guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155

    Article  CAS  Google Scholar 

  • Dujardin E, Peet C, Stubbs G, Culver JN, Mann S (2003) Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett 3:413–417

    Article  CAS  Google Scholar 

  • Durham ACH, Finch JT, Klug A (1971) States of aggregation of tobacco mosaic virus protein. Nat New Biol 229:37–42

    Article  CAS  PubMed  Google Scholar 

  • Egorova K, Antranikian G (2005) Industrial relevance of thermophilic Archaea. Curr Opin Microbiol 8:649–655

    Article  CAS  PubMed  Google Scholar 

  • Fangli Y, Peng H, Chunlei Y, Shulan H, Jinlin L (2003) Preparation and properties of zinc oxide nanoparticles coated with zinc aluminate. J Mater Chem 13:634–637

    Article  Google Scholar 

  • Fu YS, Du XW, Kulinich SA, Qiu JS, Qin WJ, Li R, Sun J, Liu J (2007) Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route. J Am Chem Soc 129:16029–16033

    Article  CAS  PubMed  Google Scholar 

  • Garcea RL, Gissmann L (2004) Virus-like particles as vaccines and vessels for the delivery of small molecules. Curr Opin Biotech 15:513–517

    Article  CAS  PubMed  Google Scholar 

  • Hu FQ, Ran YL, Zhou ZA, Gao MY (2006) Preparation of bioconjugates of CdTe nanocrystals for cancer marker detection. Nanotechnology 17:2972–2977

    Article  CAS  Google Scholar 

  • Huang Y, Chiang CY, Lee SK, Gao Y, Hu EL, De Yoreo J, Belcher AM (2005) Programmable assembly of nanoarchitectures using genetically engineered viruses. Nano Lett 5:1429–1434

    Article  CAS  PubMed  Google Scholar 

  • Jolley C, Klem M, Harrington R, Parise J, Douglas T (2011) Structure and photoelectrochemistry of a virus capsid-TiO2 nanocomposite. Nanoscale 3:1004–1007

    Article  CAS  PubMed  Google Scholar 

  • Kegel WK, van der Schoot P (2006) Physical regulation of the self-assembly of tobacco mosaic virus coat protein. Biophys J 91:1501–1512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knez M, Bittner AM, Boes F, Wege C, Jeske H, Maiss E, Kern K (2003) Biotemplate synthesis of 3 nm nickel and cobalt nanowires. Nano Lett 3:1079–1082

    Article  CAS  Google Scholar 

  • Kobayashi M, Seki M, Tabata H, Watanabe Y, Yamashita I (2010) Fabrication of aligned magnetic nanoparticles using tobamoviruses. Nano Lett 10:773–776

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV, Mushegian AR, Galperin MY, Walker DR (1997) Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea. Mol Microbiol 25:619–637

    Article  CAS  PubMed  Google Scholar 

  • Lee SW, Mao CB, Flynn CE, Belcher M (2002) Ordering of quantum dots using genetically engineered viruses. Science 296:892–895

    Article  CAS  PubMed  Google Scholar 

  • Lee LA, Niu ZW, Wang Q (2009) Viruses and virus-like protein assemblies-chemically programmable nanoscale building blocks. Nano Res 2:349–364

    Article  CAS  Google Scholar 

  • Li C, Kaplan DL (2003) Biomimetic composites via molecular scale self-assembly and biomineralization. Curr Opin Solid State Mater Sci 7:265–271

    Article  CAS  Google Scholar 

  • MaHam A, Tang ZW, Wu H, Wang J, Lin YH (2009) Protein-based nanomedicine platforms for drug delivery. Small 5:1706–1721

    Article  CAS  PubMed  Google Scholar 

  • Mao C, Solis DJ, Reiss BD, Kottmann ST, Sweeney RY, Hayhurst A, Georgiou G, Iverson B, Belcher AM (2004) Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303:213–217

    Article  CAS  PubMed  Google Scholar 

  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labeling and sensing. Nat Mater 4:435–446

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen D, Kappler U, Webb RI, Rash R, McEwan AG, Sly LI (2007) Visualisation of pyrite leaching by selected thermophilic archaea: nature of microorganism-ore interactions during bioleaching. Hydrometallurgy 88:143–153

    Article  CAS  Google Scholar 

  • Miller RA, Presley AD, Francis MB (2007) Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J Am Chem Soc 129:3104–3109

    Article  CAS  PubMed  Google Scholar 

  • Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, Chiang YM, Belcher AM (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885–888

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HD, Reddy VS, Brooks CL (2009) Invariant polymorphism in virus capsid assembly. J Am Chem Soc 131:2606–2614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Norris PR, Burton NP, Foulis NA (2000) Acidophiles in bioreactor mineral processing. Extremophiles 4:71–76

    Article  CAS  PubMed  Google Scholar 

  • Nuraje N, Dang XN, Qi JF, Allen MA, Lei Y, Belcher AM (2012) Biotemplated synthesis of perovskite nanomaterials for solar energy conversion. Adv Mater 24:2885–2889

    Article  CAS  PubMed  Google Scholar 

  • Sano KI, Shiba K (2003) A hexapeptide motif that electrostatically binds to the surface of titanium. J Am Chem Soc 125:14234–14235

    Article  CAS  PubMed  Google Scholar 

  • Sapsford KE, Soto CM, Blum AS, Chatterji A, Lin T, Johnson JE, Ligler FS, Ratna BR (2006) A cowpea mosaic virus nanoscaffold for multiplexed antibody conjugation: application as an immunoassay tracer. Biosens Bioelectron 21:1668–1673

    Article  CAS  PubMed  Google Scholar 

  • Sarikaya M, Tamerler C, Jen AKY, Schulten K, Baneyx F (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2:577–585

    Article  CAS  PubMed  Google Scholar 

  • Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11:253–256

    Article  CAS  Google Scholar 

  • Shenton W, Mann S, Colfen H, Bacher A, Fischer M (2001) Synthesis of nanophase iron oxide in lumazine synthase capsids. Angew Chem Int Edit 40:442–445

    Article  CAS  Google Scholar 

  • Smith ML, Lindbo JA, Dillard-Telm S, Brosio PM, Lasnik AB, McCormick AA, Nguyen LV, Palmer KE (2006) Modified tobacco mosaic virus particles as scaffolds for display of protein antigens for vaccine applications. Virology 348:475–488

    Article  CAS  PubMed  Google Scholar 

  • Song L, Liu Y, Chen J (2010) Inorganic binding peptide-mediated immobilization based on baculovirus surface display system. J Basic Microbiol 50:457–464

    Article  CAS  PubMed  Google Scholar 

  • Tomczak MM, Gupta MK, Drummy LF, Rozenzhak SM, Naik RR (2009) Morphological control and assembly of zinc oxide using a biotemplate. Acta Biomater 5:876–882

    Article  CAS  PubMed  Google Scholar 

  • Uchida M, Klem MT, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold LO, Young M, Douglas T (2007) Biological containers: protein cages as multifunctional nanoplatforms. Adv Mater 19:1025–1042

    Article  CAS  Google Scholar 

  • Wang X, Zhuang J, Peng Q, Li YD (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124

    Article  CAS  PubMed  Google Scholar 

  • Xiang XY, Chen LM, Huang XX, Luo YM, She QX, Huang L (2005) Sulfolobus tenchongensis spindle-shaped virus STSV1: virus-host interactions and genomic features. J Virol 79:8677–8686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu J, Sun Y, Huang JJ, Chen CM, Liu GY, Jiang Y, Zhang YM, Jiang ZY (2007) Photokilling cancer cells using highly cell-specific antibody-TiO2 bioconjugates and electroporation. Bioelectrochemistry 71:217–222

    Article  CAS  PubMed  Google Scholar 

  • Yin ZF, Wu L, Yang HG, Su YH (2013) Recent progress in biomedical applications of titanium dioxide. Phys Chem Chem Phys 15:4844–4858

    Article  PubMed  Google Scholar 

  • Young M, Willits D, Uchida M, Douglas T (2008) Plant viruses as biotemplates for materials and their use in nanotechnology. Annu Rev Phytopathol 46:361–384

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof George F. Gao’s research group from IM, CAS for generous support. The authors wish to thank Ms. Jingnan Liang from IM, CAS for TEM analyses. We also thank Prof. Paul Chu, guest professor of Institute of Microbiology, Chinese Academy of Sciences, for critical reading of the manuscript and providing constructive comments and suggestions. This work was supported by Grants from the National Basic Research Program of China (973 Program, Grant Nos. 2011CB504703 and 2010CB530102) and the National Natural Science Foundation of China (NSFC, Grant Nos. 81321063 and 31270211).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Huang or Po Tien.

Additional information

Communicated by A. Driessen.

Co-first authors: L. Song and H. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Wang, H., Wang, S. et al. Self-assembled bionanoparticles based on the Sulfolobus tengchongensis spindle-shaped virus 1 (STSV1) coat protein as a prospective bioscaffold for nanotechnological applications. Extremophiles 18, 745–754 (2014). https://doi.org/10.1007/s00792-014-0655-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-014-0655-8

Keywords

Navigation