Advertisement

Extremophiles

, Volume 18, Issue 4, pp 707–721 | Cite as

Description of Taphrina antarctica f.a. sp. nov., a new anamorphic ascomycetous yeast species associated with Antarctic endolithic microbial communities and transfer of four Lalaria species in the genus Taphrina

  • Laura Selbmann
  • Benedetta Turchetti
  • Andrey Yurkov
  • Clarissa Cecchini
  • Laura Zucconi
  • Daniela Isola
  • Pietro Buzzini
  • Silvano Onofri
Original Paper

Abstract

In the framework of a large-scale rock sampling in Continental Antarctica, a number of yeasts have been isolated. Two strains that are unable to grow above 20 °C and that have low ITS sequence similarities with available data in the public domain were found. The D1/D2 LSU molecular phylogeny placed them in an isolated position in the genus Taphrina, supporting their affiliation to a not yet described species. Because the new species is able to grow in its anamorphic state only, the species Taphrina antarctica f.a. (forma asexualis) sp. nov. has been proposed to accommodate both strains (type strain DBVPG 5268T, DSM 27485T and CBS 13532T). Lalaria and Taphrina species are dimorphic ascomycetes, where the anamorphic yeast represents the saprotrophic state and the teleomorph is the parasitic counterpart on plants. This is the first record for this genus in Antarctica; since plants are absent on the continent, we hypothesize that the fungus may have focused on the saprotrophic part of its life cycle to overcome the absence of its natural host and adapt environmental constrains. Following the new International Code of Nomenclature for Algae, Fungi and Plants (Melbourne Code 2011) the reorganization of TaphrinaLalaria species in the teleomorphic genus Taphrina is proposed. We emend the diagnosis of the genus Taphrina to accommodate asexual saprobic states of these fungi. Taphrina antarctica was registered in MycoBank under MB 808028.

Keywords

Antarctica Dimorphic ascomycetous yeasts Extreme environments Phylogeny Taphrina 

Notes

Acknowledgments

This work is in the framework of the Italian National Program for Antarctic Research. The Italian National Antarctic Museum “Felice Ippolito” is kindly acknowledged for funding CCFEE (Culture Collection of Fungi From Extreme Environments). Derek Persoh (Ruhr-Universität Bochum, Germany) is acknowledged for his advice on endophytes. Prof. Laurie Connell is kindly acknowledged for the English revision.

References

  1. Babjeva I, Reshetova I (1998) Yeast resources in natural habitats at Polar Circle Latitude. Food Technol Biotechnol 36:1–5Google Scholar
  2. Bandoni RJ, Boekhout T (2001) Tremella Persoon (1794). In: Kurtzmann CP, Fell JW, Boekhout T (eds) The Yeasts, a Taxonomic Study. Elsevier, Amsterdam, pp 1567–1590Google Scholar
  3. Blackwell M (2011) The fungi: 1, 2, 3…5.1 million species? Am J Bot 98:426–438PubMedCrossRefGoogle Scholar
  4. Boekhout T (2011) Pseudozyma Bandoni emend. Boekhout (1985) and a comparison with the yeast state of Ustilago maydis (De Candolle) Corda (1842). In: Kurtzmann CP, Fell JW, Boekhout T (eds) The Yeasts, a Taxonomic Study. Elsevier, Amsterdam, pp 1857–1868CrossRefGoogle Scholar
  5. Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241PubMedCrossRefGoogle Scholar
  6. Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nature Rev Microbiol 8:129–138CrossRefGoogle Scholar
  7. Cissé OH, Almeida JM, Fonseca Á, Kumar AA, Salojärvi J, Overmyer K, Hauser PM, Pagni M (2013) Genome Sequencing of the Plant Pathogen Taphrina deformans, the Causal Agent of Peach Leaf Curl. mBio 4:e00055–13Google Scholar
  8. Cordier T, Robina C, Capdeviellea X, Desprez-Loustaua ML, Vachera C (2012) Spatial variability of phyllosphere fungal assemblages: genetic distance predominates over geographic distance in a European beech stand (Fagus sylvatica). Fun Ecol 5:509–520CrossRefGoogle Scholar
  9. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acid Res 32:1792–1797PubMedCentralPubMedCrossRefGoogle Scholar
  10. Eriksson OE, Winka K (1997) Supraordinal taxa of the Ascomycota. Myconet 1:1–16Google Scholar
  11. Ernst JF, Schmidt A (eds) (2000) Dimorphism in human pathogenic and apathogenic yeasts, vol 5. Karger Medical and Scientific Publishers, Basel, p 246Google Scholar
  12. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 40:783–791CrossRefGoogle Scholar
  13. Fonseca Á, Inácio J (2011) Lalaria R.T. Moore emend. Á Fonseca (2004). In: Kurtzman CP, Fell JW, Boekhout T (eds) The Yeasts A Taxonomy Study. Elsevier, Amsterdam, pp 1291–1298CrossRefGoogle Scholar
  14. Fonseca A, Rodrigues MG (2011) Taphrina Fries (1832). In: Kurtzman CP, Fell JW, Boekhout T (eds) The Yeasts A Taxonomy Study. Elsevier, Amsterdam, pp 823–858CrossRefGoogle Scholar
  15. Fonseca Á, Boekhout T, Fell JW (2011) Cryptococcus Vuillemin (1901). In: Kurtzmann CP, Fell JW, Boekhout T (eds) The Yeasts, a Taxonomic Study. Elsevier, Amsterdam, pp 1661–1737CrossRefGoogle Scholar
  16. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053PubMedCrossRefGoogle Scholar
  17. Friedmann EI, Weed R (1987) Microbial trace-fossil formation, biogenous and abiotic weathering in the Antarctic cold desert. Science 236:703–705PubMedCrossRefGoogle Scholar
  18. Giobbe S, Marceddu S, Scherm B, Zara G, Mazzarello VL, Budroni M, Migheli Q (2007) The strange case of a biofilm-forming strain of Pichia fermentans, which controls Monilinia brown rot on apple but is pathogenic on peach fruit. FEMS Yeast Res 7:1389–1398PubMedCrossRefGoogle Scholar
  19. Gjaerum HB (1964) The genus Taphrina Fr. in Norway. Nytt Mag Bot 11:5–26Google Scholar
  20. Golonka AM, Vilgalys R (2013) Nectar inhabiting yeasts in Virginian populations of Silene latifolia (Caryophyllaceae) and coflowering species. Am Midl Nat 169:235–258CrossRefGoogle Scholar
  21. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  22. Hawksworth DL (2011) A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. IMA Fungus 2:155–162PubMedCentralPubMedCrossRefGoogle Scholar
  23. Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, Seifert KA, Taylor JW, Wingfield MJ, Abaci Ő et al (2011) The Amsterdam declaration on fungal nomenclature. IMA Fungus 2:105–112PubMedCentralPubMedCrossRefGoogle Scholar
  24. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Kink PM, Eriksson OE, Winka K, Huhndorf S et al (2007) A higher level phylogenetic classification of the Fungi. Mycol Res 111:509–547PubMedCrossRefGoogle Scholar
  25. Hogan LH, Klein BS (1994) Altered expression of surface alpha-1,3-glucan in genetically related strains of Blastomyces dermatitidis that differ in virulence. Infect Immun 62:3543–3546PubMedCentralPubMedGoogle Scholar
  26. Inácio J, Rodrigues MG, Sobral P, Fonseca A (2004) Characterisation and classification of phylloplane yeasts from Portugal related to the genus Taphrina and description of five novel Lalaria species. FEMS Yeast Res 4:541–555PubMedCrossRefGoogle Scholar
  27. Inácio J, Landell MF, Valente P, Wang PH, Wang YT, Yang SH, Manson JS, Lachance MA, Rosa CA, Fonseca Á (2008) Farysizyma gen. nov., an anamorphic genus in the Ustilaginales to accommodate three novel epiphytic basidiomycetous yeast species from America, Europe and Asia. FEMS Yeast Res 8:499–508PubMedCrossRefGoogle Scholar
  28. Jobb GA, von Haeseler A, Strimmer K (2004) Treefinder: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18PubMedCentralPubMedCrossRefGoogle Scholar
  29. Johnstone CG, Vestal JR (1993) Biogeochemistry of oxalate in the Antarctic cryptoendolithic lichen-dominated community. Microb Ecol 25:305–319Google Scholar
  30. Jumpponen A, Jones KL (2009) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environment. New Phytol 186:496–513CrossRefGoogle Scholar
  31. Jumpponen A, Jones KL (2010) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448CrossRefGoogle Scholar
  32. Kis-Papo T, Oren A, Wasser SP, Nevo E (2003) Survival of filamentous fungi in hypersaline Dead Sea water. Microbial Ecol 45:183–190CrossRefGoogle Scholar
  33. Komatsu M, Taniguchi M, Matsushita N, Takahashi Y, Hogetsu T (2010) Overwintering of Taphrina wiesneri within cherry shoots monitored with species-specific PCR. J Gen Plant Pathol 76:363–369CrossRefGoogle Scholar
  34. Kramer CL (1987) The Taphrinales. In: de Hoog GS, Smith MTh, Weijman ACJ (eds) The expanding realm of Yeast-like Fungi. Elsevier, Amsterdam, pp 151–166Google Scholar
  35. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73(4):331–371Google Scholar
  36. Kurtzman CP, Fell JW, Boekhout T, Robert V (2011) Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman CP, Fell JW, Boekhout T (eds) The Yeasts. A Taxonomy study. Elsevier, Amsterdam, pp 87–110CrossRefGoogle Scholar
  37. Lachance MA (2012) In defense of yeast sexual life cycles: the forma asexualis. An informal proposal. Yeast Newsl 61:24–25Google Scholar
  38. Maksimova IA, Chernov IY (2004) Community structure of yeast fungi in forest biogeocenoses. Microbiology 73:474–481CrossRefGoogle Scholar
  39. Maresca B, Kobayashi GS (2000) Dimorphism in Histoplasma capsulatum and Blastomyces dermatitidis. In: Ernst JF, Schmidt A et al (eds) Dimorphism in human pathogenic and apathogenic yeasts, vol vol 5. Karger, Basel, pp 201–2016CrossRefGoogle Scholar
  40. McKay H (2011) Short rotation forestry: review of growth and environmental impacts. Forest Research Monograph, 2, http://www.forestry.gov.uk/pdf/FRMG002_Short_rotation_forestry.pdf/$FILE/FRMG002_Short_rotation_forestry.pdf
  41. Mix AJ (1949) A monograph of the genus Taphrina. Univ Kansas Sci Bull 33:3–167Google Scholar
  42. Moore RT (1990) The genus Lalaria gen. nov. Taphrinales anamorphosum. Mycotaxon 38:315–330Google Scholar
  43. Moore RT (1998) Lalaria R.T. Moore. In: Kurtzman CP, Fell JW (eds) The Yeasts, A Taxonomic Study, 4th edn. Elsevier, Amsterdam, pp 582–591CrossRefGoogle Scholar
  44. Newman SL, Chaturvedi S, Klein BS (1995) The WI-1 antigen of Blastomyces dermatitidis yeasts mediates binding to human macrophage CD11b/CD18 (CR3) and CD14. J Immunol 154:753–761PubMedGoogle Scholar
  45. Nienow JA, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 343–412Google Scholar
  46. Nylander JAA (2004) Mr Aic.pl. Programme distributed by the author. Evolutionary Biology Centre, Uppsala UniversityGoogle Scholar
  47. Onofri S, Selbmann L, Zucconi L, Pagano S (2004) Antarctic microfungi as models for exobiology. Planet Space Sci 52:229–237CrossRefGoogle Scholar
  48. Onofri S, Zucconi L, Tosi S (2006) Continental antarctic fungi. IHW-Verlag, EchingGoogle Scholar
  49. Onofri S, Zucconi L, Selbmann L, de Hoog SG, de los Rios A, Ruisi S, Grube M (2007) Fungal Association at the cold edge of life. In: Seckbach J (ed) Algae and Cyanobacteria in extreme environments; cellular origin, life in extreme habitats and Astrobiology. Springer, Berlin, pp 739–757Google Scholar
  50. Page RDM (1996) Treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  51. Pearce DA, Bridge PD, Hughes KA, Sattler B, Psenner R, Russel NJ (2009) Microorganisms in the atmosphere over Antarctica. FEMS Microbiol Ecol 69:143–157PubMedCrossRefGoogle Scholar
  52. Peter G (2012) In support of the forma asexualis. Yeast Newsl 61:25–26Google Scholar
  53. Petrýdesová J, Bacigálová K, Sulo P (2013) The ressignment of three “lost” Taphrina species (Taphrina bullata, Taphrina insititiae, Taphrina rhizophora) supported by the divergence of nuclear and mitochondrial DNA. Int J Syst Evol Microbiol (in press) doi: 10.1099/ijs.0.052712-0
  54. Plummer CC, McGeary D (1996) Physical Geology. Wm. C. Brown Publishers, DubuqueGoogle Scholar
  55. Rodrigues MG, Fonseca A (2003) Molecular systematic of the dimorphic ascomycete genus Taphrina. Int J Syst Evol Microbiol 53:607–616PubMedCrossRefGoogle Scholar
  56. Sadebeck R (1893) Die parasitischen Exoasceen. Eine Monographie. Jahrb Hamb Wiss Anst 10:1–110Google Scholar
  57. Salata B (1974) Flora Polska, Grzyby Tom VI. Szpetkowe-Taphrinales. PWN, Warszawa–Krakov 6:1–87Google Scholar
  58. Sampaio JP (2011) Rhodotorula Harrison (1928). In: Kurtzmann CP, Fell JW, Boekhout T (eds) The Yeasts, a Taxonomic Study. Elsevier, Amsterdam, pp 1873–1927CrossRefGoogle Scholar
  59. Sampaio JP, Oberwinkler F (2011) Cystobasidium (Lagerheim) Neuhoff (1924). In: Kurtzmann CP, Fell JW, Boekhout T (eds) The Yeasts, a Taxonomic Study. Elsevier, Amsterdam, pp 1419–1422CrossRefGoogle Scholar
  60. San-Blas G, San-Blas F (1984) Molecular aspects of fungal dimorphism. Crit Rev Microbiol 11:101–127PubMedCrossRefGoogle Scholar
  61. Sanna ML, Zara S, Zara G, Migheli Q, Budroni M, Mannazzu I (2012) Pichia fermentans dimorphic changes depend on the nitrogen source. Fungal Biol 116:769–777PubMedCrossRefGoogle Scholar
  62. Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic deserts. Stud Mycol 51:1–32Google Scholar
  63. Selbmann L, de Hoog GS, Gerrits Van Den Ende AHG, Ruibal C, De Leo F, Zucconi L, Isola D, Ruisi S, Onofri S (2008) Drought meets acid: three new genera in a Dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20PubMedCentralPubMedCrossRefGoogle Scholar
  64. Selbmann L, Egidi E, Isola D, Onofri S, Zucconi Z, de Hoog GS, Chinaglia S, Testa L, Tosi S et al (2013) Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosyst 147:237–246CrossRefGoogle Scholar
  65. Selbmann L, Zucconi L, Onofri S, Cecchini C, Isola D, Turchetti B, Buzzini P (2014) Taxonomic and phenotypic characterization of yeasts isolated from worldwide cold rock-associated habitats. Fungal Biol 118:61–71PubMedCrossRefGoogle Scholar
  66. Seymour F, Crittenden P, Dyer P (2005) Sex in the extremes: lichen—forming fungi. Mycologist 19:51–58CrossRefGoogle Scholar
  67. Shivaji S, Prasad GS (2009) Antarctic Yeasts: Biodiversity and potential applications. In: Satyanarayana T, Kunze G (eds) Yeast Biotechnology: diversity and applications. Springer, Berlin, pp 3–16Google Scholar
  68. Spanos I, Woodward S (1994) The effects of Taphrina betulina infection on growth of Betula pubescens. Eur J For Path 24:277–286CrossRefGoogle Scholar
  69. Sterflinger K (2000) Fungi as geologic agents. Geomicrobiol J 17:97–124CrossRefGoogle Scholar
  70. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary Genetics analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  71. Thomas-Hall SR, Turchetti B, Buzzini P, Branda E, Boekhout T, Theelen B, Watson K (2010) Cold-adapted yeasts from Antarctica and the Italian Alps—description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov.”. Extremophiles 14:47–59PubMedCentralPubMedCrossRefGoogle Scholar
  72. Tosi S, Casado B, Gerdol R, Caretta G (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268Google Scholar
  73. Turchetti B, Thomas-Hall SR, Connell LB, Branda E, Buzzini P, Theelen B, Muller WH, Boekhout T (2011) Psychrophilic yeasts from Antarctica and European glaciers: description of Glaciozyma gen. nov., Glaciozyma martinii sp. nov. and Glaciozyma watsonii sp. nov. Extremophiles 15:573–586PubMedCrossRefGoogle Scholar
  74. van Eijk GW, Roeymans HJ (1982) Distribution of carotenoids and sterols in relation to the taxonomy of Taphrina and Protomyces. Antonie Van Leeuwenhoek 48:257–264PubMedCrossRefGoogle Scholar
  75. Verona O, Rambelli A (1962) Presenza di lieviti e di specie lievitiformi in lettiere di bosco. Ann Fac Agric Univ Pisa N.S 22:37–46Google Scholar
  76. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4239–4246Google Scholar
  77. Vishniac HS (2006) A multivariate analysis of soil yeasts isolated from a latitudinal gradient. Microb Ecol 52:90–103PubMedCrossRefGoogle Scholar
  78. White TJ, Bruns T, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for Phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols, A guide to methods and applications. Academic, San Diego, pp 315–322Google Scholar
  79. Wuczkowski M, Metzger E, Sterflinger K, Prillinger H (2005) Diversity of yeasts isolated from litter and soil of different natural forest sites in Austria. Aust J Agric Res 56:201–208Google Scholar
  80. Yurkov AM, Maximova IA, Chernov IY (2004) The comparative analysis of yeast communities in birch forests of the european part of russia and western Siberia. Mikol Fitopatol 38:71–79Google Scholar
  81. Yurkov AM, Chernov IY, Tiunov AV (2008) Influence of Lumbricus terrestris earthworms on the structure of the yeast community of forest litter. Microbiol 77:107–111CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Laura Selbmann
    • 1
  • Benedetta Turchetti
    • 2
  • Andrey Yurkov
    • 3
  • Clarissa Cecchini
    • 1
  • Laura Zucconi
    • 1
  • Daniela Isola
    • 1
  • Pietro Buzzini
    • 2
  • Silvano Onofri
    • 1
  1. 1.Dipartimento di Scienze Ecologiche e Biologiche (DEB)Università degli Studi della TusciaViterboItaly
  2. 2.Dipartimento di Scienze Agrarie, Alimentari ed Ambientali and Industrial Yeasts Collection DBVPGUniversità di PerugiaPerugiaItaly
  3. 3.Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBrunswickGermany

Personalised recommendations