Skip to main content
Log in

Cloning and characterization of a novel fold-type I branched-chain amino acid aminotransferase from the hyperthermophilic archaeon Thermococcus sp. CKU-1

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

We successfully cloned a novel branched-chain amino acid aminotransferase (Ts-BcAT; EC 2.6.1.42) gene from the Thermococcus sp. CKU-1 genome and expressed it in the soluble fraction of Escherichia coli Rosetta (DE3) cells. Ts-BcAT is a homodimer with an apparent molecular mass of approximately 92 kDa. The primary structure of Ts-BcAT showed high homology with the fold-type I, subgroup I aminotransferases, but showed little homology with BcATs known to date, i.e., those of Escherichia coli and Salmonella typhimurium, which belong to the fold-type IV, subgroup III aminotransferases. The maximum enzyme activity of Ts-BcAT was detected at 95 °C, and Ts-BcAT did not lose any enzyme activity, even after incubation at 90 °C for 5 h. Ts-BcAT was active in the pH range from 4.0 to 11.0, the optimum pH was 9.5, and the enzyme was stable between pH 6 and 7. The exceptionally low pK a of the nitrogen atom in the Lys258 ε-amino group in the internal aldimine bond of Ts-BcAT was determined to be 5.52 ± 0.05. Ts-BcAT used 21 natural and unnatural amino acids as a substrate in the overall transamination reaction. l-Leucine and other aliphatic amino acids are efficient substrates, while polar amino acids except glutamate were weak substrates. Phylogenetic analysis revealed that Ts-BcAT is a novel fold-type I, subgroup I branched-chain aminotransferase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AspAT:

Aspartate aminotransferase

BcAT:

Branched-chain amino acid aminotransferase

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

CHES:

2-(Cyclohexylamino)ethanesulfonic acid

MES:

2-Morpholinoethanesulfonic acid

PLP:

Pyridoxal 5′-phosphate

PMP:

Pyridoxamine 5′-phosphate

TAPS:

3-(Tris(hydroxymethyl)methyl)aminopropanesulfonic acid

References

  • Albertson NF (1946) The synthesis of amino acids from ethyl acetamidomalonate and ethyl acetamidocyanoacetate. III. The use of primary halides. J Am Chem Soc 68:450–453

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Andreotti G, Cubellis MV, Nitti G, Sannia G, Mai X, Marino G, Adams MWW (1994) Characterization of aromatic aminotransferases from hyperthermophilic archaeon Thermococcus litoralis. Eur J Biochem 220:543–549

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cubellis MV, Rozzo C, Nitti G, Arnone MI, Marino G, Sannia G (1989) Cloning and sequencing of the gene coding for aspartate aminotransferase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Eur J Biochem 186:375–381

    Article  PubMed  CAS  Google Scholar 

  • Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T (2006) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15:352–363

    Article  CAS  Google Scholar 

  • González JM, Sheckells D, Viebahn M, Krupatkina D, Borges KM, Robb FT (1999) Thermococcus waiotapuensis sp. nov., an extremely thermophilic archaeon isolated from a freshwater hot spring. Arch Microbiol 172:95–101

    Article  PubMed  Google Scholar 

  • Grishin NV, Phillips MA, Goldsmith EJ (1995) Modeling of spatial structure of eukaryotic ornithine decarboxylases. Protein Sci 4:1291–1304

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hayashi H, Inoue K, Nagata T, Kuramitsu S, Kagamiyama H (1993) Escherichia coli aromatic amino acid aminotransferase: characterization and comparison with aspartate aminotransferase. Biochemistry 32:12229–12239

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Mizuguchi H, Kagamiyama H (1998) The imine-pyridine torsion of the pyridoxal 5′-phosphate schiff base of aspartate aminotransferase lowers its pK a in the unliganded enzyme and is crucial for the successive increase in the pKa during catalysis. Biochemistry 37:15076–15085

    Article  PubMed  CAS  Google Scholar 

  • Hoaki T, Nishijima M, Kato M, Adachi K, Mizobuchi S, Hanzawa N, Maruyama T (1994) Growth requirements of hyperthermophilic sulfur-dependent heterotrophic archaea isolated from shallow submarine geothermal system with reference to their essential amino acids. Appl Environ Microbiol 60:2898–2904

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hosono A, Mizuguchi H, Hayashi H, Goto M, Miyahara I, Hirotsu K, Kagamiyama H (2003) Glutamine:phenylpyruvate aminotransferase from an extremely thermophilic bacterium, Thermus thermophilus HB8. J Biochem 134:843–851

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Kuramitsu S, Aki K, Watanabe Y, Takagi T, Nishigai M, Ikai A, Kagamiyama H (1988) Branched-chain amino acid aminotransferase of Escherichia coli: overproduction and properties. J Biochem 104:777–784

    PubMed  CAS  Google Scholar 

  • Jansonius JN (1998) Structure, evolution and action of vitamin B6-dependent enzymes. Curr Opin Struct Biol 8:759–769

    Article  PubMed  CAS  Google Scholar 

  • Johnson PH, Grossman LI (1977) Electrophoresis of DNA in agarose gels. Optimizing separations of conformational isomers of double- and single-stranded DNAs. Biochemistry 16:4217–4225

    Article  PubMed  CAS  Google Scholar 

  • Kondo K, Wakabayashi S, Kagamiyama H (1987) Structural studies on aspartate aminotransferase from Escherichia coli. J Biol Chem 262:8648–8659

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lee HS, Kang SG, Bae SS, Lim JK, Cho Y, Kim YJ, Jeon JH, Cha SS, Kwon KK, Kim HT, Park CJ, Lee HW, Kim SI, Chun J, Colwell RR, Kim SJ, Lee JH (2008) The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. J Bacteriol 190:7491–7499

    Google Scholar 

  • Mardanov AV, Ravin NV, Svetlitchnyi VA, Beletsky AV, Miroshnichenko ML, Bonch-Osmolovskaya EA, Skryabin KG (2009) Metabolic versatility and indigenous origin of the archaeon Thermococcus sibiricus, isolated from a Siberian oil reservoir, as revealed by genome analysis. Appl Environ Microbiol 75:4580–4588

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mehta PK, Hale TI, Christen P (1989) Evolutionary relationships among aminotransferases. Eur J Biochem 186:249–253

    Article  PubMed  CAS  Google Scholar 

  • Mehta PK, Hale TI, Christen P (1993) Aminotransferases: demonstration of homology and division into evolutionary subgroups. Eur J Biochem 214:549–561

    Article  PubMed  CAS  Google Scholar 

  • Mizuguchi H, Hayashi H, Miyahara I, Hirotsu K, Kagamiyama H (2003) Characterization of histidinol phosphate aminotransferase from Escherichia coli. Biochim Biophys Acta 1647:321–324

    Article  PubMed  CAS  Google Scholar 

  • Ohshima T, Nishida N (1993) Purification and properties of extremely thermostable glutamate dehydrogenase from two hyperthermophilic archaebacteria, Pyrococcus wosei and Pyrococcus furiosus. Biosci Biotechnol Biochem 57:945–951

    Article  PubMed  CAS  Google Scholar 

  • Oue S, Okamoto A, Nakai Y, Nakahira M, Shibatani T, Hayashi H, Kagamiyama H (1997) Paracoccus denitrificans aromatic amino acid aminotransferase: a model enzyme for the study of dual substrate recognition mechanism. J Biochem 121:161–171

    Article  PubMed  CAS  Google Scholar 

  • Ovchinnikov YA, Egorov CA, Aldanova NA, Feigina MY, Lipkin VM, Abdulaev EV, Kiselev AP, Modyanov NN, Braunstein AE, Polyanovsky OL, Nosikov VV (1973) The complete amino acid sequence of cytoplasmic aspartate aminotransferase from pig heart. FEBS Lett 29:31–34

    Article  PubMed  CAS  Google Scholar 

  • Rinker KD, Kelly RM (1996) Growth physiology of the hyperthermophilic archaeon Thermococcus litoralis: development of sulfur-free defined medium, characterization of an exopolysaccharide, and evidence of biofilm formation. Appl Environ Microbiol 62:4478–4485

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rinker KD, Kelly RM (2000) Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritime. Biotechnol Bioeng 69:537–547

    Article  PubMed  CAS  Google Scholar 

  • Saito M, Nishimura K, Wakabayashi S, Kurihara T, Nagata Y (2007) Purification of branched-chain amino acid aminotransferase from Helicobacter pylori NCTC 11637. Amino Acids 33:445–449

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sakuraba H, Kawakami R, Takahashi H, Ohshima T (2004) Novel archaeal alanine:glyoxylate aminotransferase from Thermococcus litoralis. J Bacteriol 186:5513–5518

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, New York

    Google Scholar 

  • Schadewaldt P, Wendel U, Hammen HW (1995) Human branched-chain l-amino acid aminotransferase: activity and subcellular localization in cultured skin fibroblasts. Amino Acids 9:147–160

    PubMed  CAS  Google Scholar 

  • Schicho RN, Ma K, Adams MWW, Kelly RM (1993) Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 175:1823–1830

    PubMed Central  PubMed  CAS  Google Scholar 

  • Takahata Y, Nishijima M, Hoaki T, Maruyama T (2000) Distribution and physiological characteristics of Hyperthermophiles in the Kubiki oil reservoir in Niigata, Japan. Appl Environ Microbiol 66:73–79

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Takahata Y, Hoaki T, Maruyama T (2001) Starvation survivability of Thermococcus strains isolated from Japanese oil reservoirs. Arch Microbiol 176:264–270

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thage BV, Rattray FP, Laustsen MW, Ardö Y, Barkholt V, Houlberg U (2004) Purification and characterization of a branched-chain amino acid aminotransferase from Lactobacillus paracasei subsp. paracasei CHCC 2115. J Appl Microbiol 96:593–602

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tulchin N, Ornstein L, Davis BA (1976) A microgel system for disc electrophoresis. Anal Biochem 72:485–490

    Article  PubMed  CAS  Google Scholar 

  • Vannier P, Marteinsson VT, Fridjonsson OH, Oger P, Jebbar M (2011) Complete genome sequence of the hyperthermophilic, piezophilic, heterotrophic, and carboxydotrophic archaeon Thermococcus barophilus MP. J Bacteriol 193:1481–1482

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Watrin L, Martin-Jezequel V, Prieur D (1995) Minimal amino acid requirements of the hyperthermophilic archaeon Pyrococcus abyssi, isolated from deep-sea hydrothermal vents. Appl Environ Microbiol 61:1138–1140

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yano T, Oue S, Kagamiyama H (1998) Directed evolution of an aspartate aminotransferase with new substrate specificities. Proc Natl Acad Sci USA 95:5511–5515

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yokooji Y, Tomita H, Atomi H, Imanaka T (2009) Pantoate kinase and phosphopantothenate synthetase, two novel enzymes necessary for CoA biosynthesis in the archaea. J Biol Chem 284:28137–28145

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yvon M, Chambellon E, Bolotin A, Roudot-Algaron F (2000) Characterization and role of the branched-chain aminotransferase (BcaT) isolated from Lactococcus lactis subsp. cremoris NCDO 763. Appl Environ Microbiol 66:571–577

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zivanovic Y, Armengaud J, Lagorce A, Leplat C, Guérin P, Dutertre M, Anthouard V, Forterre P, Wincker P, Confalonieri F (2009) Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the archaea. Genome Biol 10:R70

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a grant from the Strategic Research Foundation Grant-aided Project for Private Universities from the Ministry of Education, Culture, Sport, Science, and Technology, Japan (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadao Oikawa.

Additional information

Communicated by A. Driessen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchida, Y., Hayashi, H., Washio, T. et al. Cloning and characterization of a novel fold-type I branched-chain amino acid aminotransferase from the hyperthermophilic archaeon Thermococcus sp. CKU-1. Extremophiles 18, 589–602 (2014). https://doi.org/10.1007/s00792-014-0642-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-014-0642-0

Keywords

Navigation